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I. Introduction. 

There are various reasons for preferring local (e.g., three-bump) 

orbit correction methods to global corrections. One is the difficulty of 

solving the mN equations for the required mN correcting bumps, where N is the 

number of superperiods and m is the number of bumps per superperiod. The 

latter is not a valid reason for avoiding global corrections, since, as shown 

in Ref. [1], we can take advantage of the superperiod symmetry to reduce the 

mN simultaneous equations to N separate problems, each involving only m 

simultaneous equations. 

Since the method depends on the fact that the linearized equations 

have N superperiod symmetry, these equations must be taken to be the linear 

equations for the idealized lattice. Presumably the linear equations will be 

good enough so that a few iterations of the correction scheme will converge, 

though this point needs to be tested. Otherwise, some other correction scheme 

will be needed to bring the orbit within range of the linear correction 

equations. 

The prescription in Ref. [1] amounts essentially to applying a 

Fourier point transform to each index which labels the superperiods. The mN 

linear equations then separate into N sets of m equations each, one set for 

each Fourier index. Since this is a decomposition into wavenumbers, it may 

have other advantages. For example, we will see that the dominant terms are 

those having Fourier indices closest the betatron tune Vx or vz • 
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In Reference [2], I will show how to solve the general problem when 

the machine contains unknown magnet errors of known probability distribution, we 

make measurements of known precision of the orbit displacements at a set of 

points, and we wish to apply correcting bumps to minimize the weighted rms 

orbit deviations. In this report, we will consider two simpler problems, 

using similar methods. In Section II, we consider the case when we make M 

beam position measurements per superperiod, and we wish to apply an equal 

number M of orbit correcting bumps to reduce the measured position errors to 

zero. In Section III, we consider the problem when the number of correcting 

bumps is less than the number of measurements, and we wish to minimize the 

weighted rms position errors. We will see that the latter problem involves 

solving equations of a different form, but involving the same matrices as the 

former problem. 

II. Reducing the Position Errors to Zero. 

Let the beam position monitors be located at the points 

s = sm + kS, m = 1, ••• , M, k = O, ••• ,N-1 , (2.1) 

where s is the distance measured along the reference orbit, sm are a set of M 

points within a superperiod, k is the superperiod index and S is the length of 

the reference orbit in a superperiod. Note that we assume the beam position 

monitors are located at periodic points in all superperiods. Let the measured 

orbit errors (horizontally, or vertically) be -Ykm • We wish to find a set of 

orbit bumps B~n which reduce the measured orbit deviations to zero. The bumps 

are located at the points 
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s = sn + ts, n = 1, ••• ,M, t = O, ••• ,N-l, (2.2) 

where n labels the bumps within a single superperiod, and t is the superperiod 

index. In linear approximation, we require 

(2.3) 

where the matrix element Akm;tn is the orbit deviation at sm + kS due to a 

unit bump at sn + tS. The bumps Btn are measured in units such that a unit 

bump Btn = 1 produces a unit increment in slope Y'(s) at s = sn + tS. In view 

of the symmetry, the matrix Akm;tn may depend only on the difference of the 

superperiod indices: 

(2.4) 

The Fourier point transforms of the bumps Btn and the displacements 

Ykm are defined by the equations 

(2.5) 

(2.6) 

Ya = N-1/ 2 r Y e-2~iak/N 
m k km ' (2.7) 

(2.8) 
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The exponentials in Eqs. (2.5)-(2.8) are periodic with period N in the indices 

a, t, k. We take the coefficients ban' Btn' yam' Ykm to have the same 

periodicity in these indices. The sums in these equations may then be taken 

over any N consecutive values of the summation index. For many purposes, it 

will be convenient to let the Fourier index a run over the values a = 0, 

±1, ••• , ±(N-2)/2, N/2, in order emphasize the fact that 

(2.9) 

The Fourier transform of Eq. (2.3) can be written in the form 

(2.10) 

where 

ea = ~ A e-2~ira/N mn ~r rmn • (2.11 ) 

We have to solve N separate sets of M simultaneous equations each, for the 

Fourier coefficients ban. 

We now calculate explicitly the coefficients ea
mn• The orbit 

corresponding to a unit bump at s = sn + ts is given by 

y(s) 
w w(s) 

n 
= 2sin(~v) cos[~(s) - Wn - t~ - ~v], (2.12) 

where the phase in square brackets is to be adjusted by adding a multiple of 

2~v so that it lies in the range (-~V, ~v), where 

(2.13) 
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and where Wn = W(sn) is the phase advance from s = 0 to s = sn in a 

superperiod. The phase advance through a superperiod is ~, and the number of 

betatron oscillations per revolution is v = N~/2~. Because of the superperiod 

symmetry, w(sn) is periodic with period S, and wn does not require an index 

t. The matrix element (2.4) is therefore given by 

ww n m Arnm = 2sin(~v) cos[Wm - Wn + r~ - ~vl· (2.14) 

We substitute this value in Eq. (2.11). The sum is evaluated by expanding the 

cosine in complex exponential form, with the result 

where 

fI mn = 

1 =-ww 4 m n 

Note that Ca has the symmetry: mn 

C-a = Ca * mn mn • 

i ~ (a-v) 
s n N 

2~ifl a/N 
e mn sinlw -W I m n 

i 
~(a+v) 

s n N 
(2.15) 

(2.16) 

(2.17) 

We therefore need to solve Eqs. (2.10) only for a = 0,1, ••• , N/2, since for 

a = -1, ••• , -(N-2)/2, the solutions are the conjugates of the solutions for 

positive values of a. Note the resonant dominators in Eqs. (2.15). Note also 

that if the bumps and BPM's are at the same locations, then the matrix Akm;tn 

is symmetric, and the matrix ca
mn is hermitian. 
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III. Minimizing Position Errors. 

If the number B of bumps per superperiod is less than the number M 

of beam position measurements (n = 1, ••• ,B), then we define the weighted mean 

square position error: 

where Wm is the weight assigned to the position error at sm + kS. Minimizing 

E results in the equations 

M 
r W 

m=1 m 

B 
[ ~ -a ba a ] 

t. C mn' n'-y = 
n'=1 m 

0, n = 1, ..• ,B, (3.2) 

involving the same coefficients ca
mn as Eq. (2.10). Equations (3.2) are to be 

solved for the Fourier coefficients ban. If B = M, then Eqs. (2.10) satisfy 

Eqs. (3.2). 
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