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Outline

! The Need: to go beyond element specific magnetism.

! The Tool: Resonant diffraction of CP x-rays.

! Example: Site-specific magnetism in Nd2Fe14B.

! Magnetic spectroscopy in the diffraction channel.

! Outlook and Summary.
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Phase-Specific
Same element in coexisting phases

The Need: to go beyond element specific magnetism

Nanocomposites: NdFeB/Fe
Impurity phases:Sm2Co7/SmCo5
Intrinsic (CMR, stripes)

Element-specific XMCD lacks phase, site selectivity.

Site-specific
Same element in inequivalent crystal sites

Fe Nd B

Fe3O4
R2Fe14B
Gd5Si2Ge2
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The Tool: resonant diffraction of CP x-rays

Diffraction = phase and site selectivity
Atomic resonance = element specificity
CP x-rays = coupling to sample magnetization

25-40 nm
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The Tool: resonant diffraction of CP x-rays

Diffraction = phase and site selectivity
Atomic resonance = element specificity
CP x-rays = coupling to sample magnetization
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Resonant absorption and scattering of CP x-rays
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I∝f 2 = charge + magnetic + charge ×magnetic
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Scat. Amp. (E1) for magnetic ion near resonance (Hannon et al., 1988)
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||m̂ scat. plane Strong E-dependence

m̂

Needs to get rid of strong charge scattering (ferro-ferrimagnets)
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Nd 4f
Nd 4g

B
Fe 

• Fe: ~ 31 µB/f.u.
Nd: ~ 6 µB/f.u.

• Easy axis:  [001] at RT, tilts towards [110] at low T
• Magnetic “hardness” due to large orbital moment of Nd ions.

Spin Orbit

Example: Site-specific magnetism in Nd2Fe14B
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Site-specific Nd structure factors in Nd2Fe14B

Wyckoff Site     (110)             (220)          (440)   

4f 2.2+0.5i       140+35i     86+29i

4g 69+15i        5.2+1.3i   92+31i
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Paul Canfield, Ames Lab

c

H

Spin reorientation transition in Nd2Fe14B
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Site-specific spin reorientation transition
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• Spin-dependent DOS (EF).
• Size of moment (orbital, spin).
• Orientation of moment, magnetization reversal.

Easy interpretation in absorption channel (XMCD)
[optical theorem µm∝f”m(q=0)].

µm ∝ N(↑) − N(↓)

µm ∝ M cosθ

2p

5d

4f

Resonant diffraction can yield same information, but harder to retrieve.
(Intensity depends on real and imaginary parts of fe, fm;  phase problem).

Magnetic spectroscopy in the diffraction channel
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Magnetic spectroscopy in the diffraction channel

Ab-initio (FEFF8) calculations of µe, µm for each site separately.

µ(E) → ′ ′ f (E) → ′ f (E)
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Magnetic spectroscopy in the diffraction channel

Structure factor calcs with ab-initio
res. scat. factors as initial guess; refine.
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Outlook and summary

• Diffraction (Q) + resonance (E) + CP x-rays (M)
allows for phase and site specific studies of
magnetism in artificially or naturally inhomogeneous
systems.

• Combination with ab-initio calculations should
yield phase/site specific spectroscopic information,
such as SDOS(EF) and magnetic moments.


