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Collaborators
• Drs. Suresh Narayanan, Rodney Guico, Xuefa Li (XFD/ANL)
• Prof. Ken Shull 

- Au/polymer nanocomposite thin Films
• Dr. Dong Ryeol Lee (XFD/ANL) and Prof. Sunil Sinha (UCSD)

- DWBA calculations
• Profs. Martin Caffrey (Ohio State U.), Michael J. Bedzyk 

(Northwestern), Dr. Tom Penner (Kodak)
- Diffuse double layer at model membrane surfaces 

The experiments have been done at beam line 1-BM of the APS and D1 station of 
CHESS. Support by Sector 1 and CHESS staff is acknowledged. This work 
and the use of the APS are supported by the U. S. DOE under Contract No. 
W-31-109-Eng-38. CHESS is supported by the National Science Foundation 
and the National Institutes of Health/National Institute of General Medical  
Sciences under award DMR00-225180.
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Outline

• Grazing-angle x-ray techniques for surface studies
• Diffuse-double layer at model membrane surfaces

- Ionic distribution
- Reversibility during pH titration

• Anisotropic nanoparticle diffusion in ultrathin 
polymer films
- Perpendicular to interfaces
- Lateral motion

• Conclusions
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Surface Sensitive X-ray Techniques

! Reflectivity (XRR)
! Diffuse scattering
! X-ray standing waves (XSWs) 
! Grazing-incident small angle scattering (GISAXS)

! Nonintrusive, in situ capabilities
! Ideal for studying membrane kinetics and dynamics
! Well-suited for ultrathin films 



5

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

X-ray Reflectometry
• X-ray reflectivity to probe electron-density distribution normal to 

the film surfaces: L.G. Parratt, Phys. Rev. 95, 359 (1954)
• X-ray diffuse scattering to probe in-plane density fluctuation:

S.K. Sinha et al. Phys. Rev. B38, 2297 (1988)
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X-ray Standing Waves
XX--Ray Standing Waves by Total External ReflectionRay Standing Waves by Total External Reflection
M.J. Bedzyk et al. Phys. Rev. Lett. 62 1376 (1989)
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E-Field Intensity vs. Angle
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Charged Membrane Surfaces
• Charged membrane in contact with electrolytes (ion transport)
• Model by Helmholtz, Gouy-Chapman, Stern
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Experiment Setup
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DDL Reversibility by pH
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Jin Wang, Martin Caffrey, Mike Bezyk, Tom Penner

Langmuir, 17. 3681 (2001)
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Summary

As H+ concentration increased upon changing pH from 5.8 to 2.0, the 
amount of zinc in the DDL decreased from 122 mM to a low of ca. 19 
mM.

Recovery of the pH 5.8 distribution profile was essentially complete 
upon back-titration from pH 2.0.

These results demonstrate clearly that within the experimental error of 
the measurement ion distribution at the charged membrane interface is 
reversible.
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Nanoparticles in Ultrathin Films
• Understanding the diffusion of nanoparticle metal 

particle in ultrathin polymer films
- molecular dynamic in confined geometry
- drastically different diffusion properties than in bulk
- van der Waals interactions, steric forces, chemical affinities

• A host of x-ray techniques can be applied
- X-ray reflectivity and standing waves: diffusion perpendicular to 

interfaces
- X-ray photon correlation spectroscopy: local short time dynamics
- GISAXS using x-ray wave-guides: in-plane motion

• Complementary techniques
- TEM
- SPM
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Model: Au NP in Homopolymer
Poly (tert-butyl acrylate)

Amorphous homopolymer
Glass transition temperature (Tg) = 49 °C
Molecular weight (MW) = 352,000 g/mol

Radius of gyration (Rg) = 150 Å
Film thickness = 150 Å to 600 Ås
Not chemically reactive to gold
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Vertical Diffusing

X-ray Standing Waves 
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XSW Data 

• A few Å spatial resolution
• A few s temporal resolution

PtBA

PtBA
Au/PtBA

0

z

N
or

m
al

iz
ed

 A
u 

L 
Fl

uo
re

sc
en

ce
Incident Angle (mrad)

0

1

2

3

4

5

-200 0 200 400 600 800 1000

θ = θ
c
 (5.1 mrad)

θ = 0.08 θ
c
 (0.4 mrad)

E-
Fi

el
d 

In
te

ns
ity

 (I
/I 0)

Distance-to-Mirror (�)

Silver Air

E = 12.1 keV

I z,θ( ) = E0 + ER
2 = I0 1+ R + 2 R cos φR − 2πqZ z( )[ ]

Y (θ ) = I z,θ( )∫ ⋅ρ z( )dz

X-ray Fluorescence Yield



16

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Diffusion Coefficient 

Diffusion coefficient
5x10-18 cm2/s

Incident Angle, θ, (mrad)

85°C

Guico, Narayanan, Wang, Shull, Macromolecule, accepted
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Wave-Guiding Effect  
Resonance Enhancement 

Wave-guiding effect at several angles
Wang, et al. Science 258, 775 (1992)

Electric Field distribution and enhancement35 nm PtBA
Air

35 nm PtBA

50 nm Ag
5 nm Cr
Glass z
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GISAXS with Enhancement 
• And something more
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Effect of the Enhancement 
• Enhancement is apparent at different incident angles
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Simulation of the GISAXS 
• Optical reciprocity explains the modulation in qz direction
• DWBA yield satisfactory simulation (see Prof. Sunil Sinha’s talk)



21

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Real Time Measurement 
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Anisotropic Motion
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Narayanan, Guico, Lee, Sinha, Wang, Submitted to Phys. Rev. Lett. 
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Summary 
• Anisotropic diffusion or motion properties has been observed: 

10 times faster in the plan than normal to the surfaces

• Thin-film-based wave-guiding effects greatly enhance GISAXS 
signals, 100, and, with location selectivity

• The enhancement will be extremely useful for correlation 
spectroscopy using coherent beam: scattering intensity is a 
limit, 100-fold of enhancement will be certainly help!

• Grazing-incident is powerful to obtaining the location-
dependence of the kinetics and ordering
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Density Fluctuations in Co-Polymer 
• For weak contrast systems such as diblock co-polymers for 

time-resolved studies: in progress
• Interface with <3% interfacial electron density difference

Collaboration with M. Foster (Akron)
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Membrane Protein Structure 
• 3-D crystallography 

of 2D crystal?

•Nanoparticulate 
phospholipid bilayer 
disk with membrane 
scaffold protein
•T. Bayburt et al. Nano 
Letters 2, 853 (2002)
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Membrane Protein Unfolding 
• Induced by AFM tips 
• F. esterhelt, et al. Science 288, 143 (2000)


