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high energy?
m Science: Order-disorder affects thermodynamic
and physical properties (think dielectric loss,

oxygen ordering in superconductors, Al/Si
ordering In silicates)

m Pressure: Competition between entropic gain
(disorder) and cases where pressure favors
ordering

= High PT studies relevant to planetary and novel
materials

m |n Situ: State of order in guench sample?

m protocols for in situ diffraction data collection now
established

= Kinetic studies might provide activation energies and



How? Accurate crystallographic studies at high PT

m Versatile beamlines designed for
m (A) Reconnaissance - rapid survey of phase space
m (B) Accurate structures - f(P,T,t) (kinetics)

m Pressure Cells

m Opposed anvil devices
 Diamond cell
* Large volume devices



(A) Example of Reconnaissance study at HI-PT - Laser heated
DAC (diamond anvil cell) study of CaSO, (anhydrite)




Set up at ID-09 ESRF (no laser heating In

place)
E ~

« No hutch entry necessary
— Diaphragm cells
— Measure P on-line




(A) Reconnaissance: possible HP-HT structure-types of
CaSO, (A%*B®*0,)

m Anhydrite structure unique in A%B®Q, chemistry

m Beginning of anticipated transitions from
m “low-pressure” small-cation BO,°* (B=S, Zr, Cr) .

®m “moderate-pressure” (larger cation) monazite-and
barite-type structures

m “high-pressure” tungstates with barite- and scheelite
structures.
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+P +T Barite-type

p =3.824 glcm3
P=21.4GPa/T=1450 K

\/)7 o
recovered

-P
Anhydrite AgMnO,-type
p =2.959 g/cm? <: p = 3.824 g/lcm3
ambient P-T P=19.9 GPa/ T = 295K

Rapid survey of phase space
nossible with DAC and stable
aser heating; equally viable
with large volume cell




Structural basis for physical properties

m Emerging perspectives

m Sound velocities can be affected near phase
transitions and as function of cation order

m Stability dramatically enhanced
m Structural basis for these phenomena?
m Advantageous to measure both properties

and scattering suitable for derivation of
accurate structure models

m This can be sometimes be easier in Large
Volume High Pressure Devices



Order-disorder in spinels
Inversion parameter (x)
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Order-disorder and physical properties: Changes in
sound velocity in MgFe,O, spinel
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Structural basis for physical properties

m Emerging perspectives

m Sound velocities can be affected near phase
transitions

m Stability dramatically enhanced
m Structural basis for these phenomena?
m Advantageous to measure both properties

and scattering suitable for derivation of
accurate structure models

m This can be sometimes be easier in Large
Volume High Pressure Devices



Order-disorder and thermodynamic properties:
reason for dolomite’s enhanced stability at high PT?
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Structural basis for this dramatic increase in stability at HT?
Pressure dependence?



Structural basis for physical properties

m Advantageous to measure both properties
and scattering suitable for derivation of
accurate structure models

m This can sometimes be easier in Large Volume

High Pressure Devices (T stability, large volume
-> higher signal provided sensitivity maintained)



Large volume devices

m Advantages

m Sample volume ~ 10* x DAC
« Especially useful in case of amorphous materials

= Heating stability, control and measurement
m Simultaneous property/diffraction (sound velocity)
m Easier control of pO,, pCO, etc, reaction buffers

m Disadvantages
m Single crystal studies difficult

m Pressure range limited < 40 GPa
m Parasitic scattering from cell assembly



Paris-Edinburgh set-up at ID30, (ESRF W. Crichton), 11-ID

(Tulk and Benmore - see Frontiers 2004 in Guest House)
Unfocused beam, 0.1mm(h) x 0.25mm(v) on sample
Energies > 40keV)

- slits required (single or radial)

MAR345




SUBTRACTION OF CELL ASSEMBLY-CONTRIBUTION
TO OBSERVED DIFFRACTION PATTERN
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Problematic for complex patterns with weak low angle ordering peaks
(like dolomite) - better to eliminate parasitic scattering in such cases.



Paris-Edinburgh set-up at ID30, (ESRF W. Crichton)
Radial slits mounted on translation between detector and cell
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disorder in dolomite: R3c -> R3 transition

R-3c

Decrease intensity
of “ordering”

Reflections near
transition

Order parameter s = 2 X, - 1, varies froms = 1
(where X, = 1) for a completely ordered dolomite
to s = 0 (where x., = 0.5)



Disorder in dolomite ( R3c -> R3) leads to disappearance of c-glide
dependent absence (015); how good an indicator of disorder IS ly;g/lqps?




Pattern collected with slits room PT In
cell - no parasitic scattering
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Pattern collected with slits at 3 GPa,
1466 K - no parasitic scattering
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Derived from full Rietveld refinement
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Short Range order In crystalline materials

m Bragg scattering gives average picture

m Short range order interpreted in context of space group
picture (split atom sites)

m Direct Fourier transform of the diffraction pattern

= Includes all (elastic) scattering, including diffuse
scattering

e correspond to “instantaneous” image - information of
Interatomic distances “unfiltered” by space group constraints

 (Ambiguity often remains though)
m Lose the comfort of space group symmetry and

stictural i\mage | 1 A
A.- Pi@bre 3 interé%‘omic %nces at transitioy.//effects

e D e b e e




Pair distribution function analysis using
High Pressure data (HP-PDF)- why?

m Order-disorder inherently short -range
phenomenon and pressure promotes transitions

m Long range order established over time - nucleation Vs.
martensitic mechanisms (eg PRLs, 83, 328; 86, 4072) of
phase transformation at HP for hcp -> ccp

m Effects of deviatoric stress on transition mechanism

m Pair distribution function + modeling offers a way
forward



Quantitative (Q)HP-PDF - how?

m Difficulties doing QHP-PDF

m Interference (scattering, Compton) from cell
e Slits and LVHPD
 Diamond anvil cell with thin diamonds and larger sample size

= Limited data range - trade-offs in PT, cell
opening/access
* use high energy

m Small sample size in DAC
« Brightest possible (focused) beams
m Trial experiments

= nanocrystalline gold (50 nm diameter) in DAC RT, 0- 10
GPa. Excellent data



PDF measurements in a DAC on nanocrystalline Au (1-ID-C, E =80 keV, A =
0.10557 A). Image plate data: few diamond spots

Imaging Plate
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10.50 GPa - deviatoric stress
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Conclusions

m Protocols for collection of reliable diffraction data

at
O

HP established
_arge volume and DAC

High energy, slits, quiet detectors

m Couple to synthesis efforts for making practical

materials

m Protocols for studying (quantitative) short range
order-disorder (and time resolved?) at HP now
being explored

m Encouraging results
m Experiment requiring high energy (100keV capable),

faciticed 1indiilator heame



