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Abstract

Next generation FEL-based light sources were investigated at small scale
test facilities and shown to be viable at intermediate energy linac
facilities. Light sources, such as the APS, feature injector linacs with
significant capabilities, including beam energies approaching 1 GeV.
These facilities and their beams offer a rich opportunity to study compact
radiation production schemes. These schemes can provide THz, x-ray,
and gamma-ray production which are interesting in their own right, and
can be complementary to existing and future light sources. In this talk, |
will discuss radiation production from dielectric structures as well as
Inverse Compton Scattering (ICS) sources. Selected applications,
Including production of positrons and detection of special nuclear
materials will be mentioned. | will use examples from our work at UCLA
as well as parameters that may be accessible at the APS.
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Spectral regions which are still difficult to generate and produce
Interesting science include THz, x-ray and gamma ray
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Fast, hard x-ray production ( >50 keV & <50 ps)
IS a challenging regime

K-

Synchrotron Light Sources:

<50 keV, > 50 ps maximum @ 24 keV  energy limit ~ 100 keV, 4n
107 photons, Bx>1016 photons/s/mm?2/mrad?/.1%bw measured calculated
10° ] . '
_'g 10’ ™ - ® ° @
% 10° o °
E 20 40 0 1 2 20 40 0 10 2
< 0, (mrad) 0, (mrad)
ol ICS: already established very high brightness at
0% 80 T 1R 140 140 keV, fs hard x-rays (PLEIADES)

X-ray Energy (keV)

Tuesday, June 23, 2009



ABSORPTION SPECTRA:

~ THE sorocey: I
= LECTROMAGNETIC revort: T | T

SPECTRUM| 0 ==

THESE WAVES TRAVEL THROUGH THE e  SEFE g/
RED (CeanGe YEuoW  Geeed BUE wouer&%

H

ELECTROMAGNETIC FIELD THEY
WERE FORMERLY CARRED BY THE
AETHER, WHICH WAS DECOMMISSIONED
IN 1897 DUE TO BUDGET CUTS.

OTHER WAVES:
SLINKY WAVES JGROUTING (AR DEAERSHIP (OMERCIALS |

HAM KOSHER
lm&o_ RADIO

CELL PHONE
rmm RAYS @ i
GoNE Rats T GRAVITY =
CONTROLLING . ALIENS B' o
STRE BAUTER ‘ 4 O
o [* - SETI g ﬂ‘&ocows
wl I 5
- [SINISTER
IL
o ”\wfﬂ BRAN 3 (?igehs %GLE %
FQ: WAVES sunes b AASES |
>
PAJER € TELEPHONE | RADIO € TV | MICROANES q GAATA/CosTC RS %
;\ m 10 w1t 10f et W’ w6t 1w 1 w107 : bE" LA 0"
voot lo;u- w Xk N~ ~Ttm la Om 1m Oew e 2 ig0p= 0= 1pm  1Ofm
(GOSN 10* 10 10* w0 0wt 0 nc_>’ o cp" 10 LA :Jo‘ 0" nf" 10” 4?" o™ u_»" :oj
F 11; |;a¢ ,éu. "'a. Okke Wk, 1MN: bbh ROMH. 1Gh 100% T 00GHe IThe  10TH, B0 OTHER ETEKTAnG GEEEA MRICNGS UKE PETA- AUD ExA- ASD 2APA-
g — + . - 3 ' + I i } ———
Q(G‘/c‘g.,.y\ 4 " T 17 n ¢ e 2 s<o® R "

Tuesday, June 23, 2009



The ICS process is analogous to an
electromagnetic undulator

Photon is Doppler upshifted

electrons laser X-rays
l - ) —- = hvSCClt = 4y2hvlaS€V
Assume gaussians of equal length
E[J c,,0
N, ~4x10°N L] < N,~NN, —~—=—0
4 e Y e 2 + 2 T
ZR [l/tm] Gr,e Gr,L
2
example: 1J laser; 1mm range; 1 nC beam o = S| oh
1 T
N, ~4x10°(6x107)- =2 x10" 3 \m.c

0, =6.7x10"cm’

good to know: normalized laser potential

a, =~0.85x107 4, [,um]\/lo [W/cmz]
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In this post-Cold War world, nuclear terrorism may be the single most
catastrophic threat that any nation faces - we must do everything we can to

ensure against its occurrence.

-- Joseph Krol, Associate Administrator, NNSA
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The detection and tracking of SNM is a global,
multifaceted effort

...nuclear materials detection is but one tool in the broad array of
ongoing activities and emerging capabillities, systems, and
architectures that comprise an overall strategy to counter nuclear
terrorism.

-- Joseph Krol, Associate Administrator, NNSA
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From “Progress in Nuclear Detection”, Abu Bowman, DNDO, 3/23/2007
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Currently employed methods of passive detection
of SNM can easily be defeated

portal screening

—asy to negate with shielding
Can be masked with other isotopes
Low signal-to-noise at long-range
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Radiography addresses some of the shortcomings of
nassive detection but Is unsuited to stand-off detection
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Standoff detection of SNM requires active

INnterrogation

At long distances, Signal-to-Noise Ratio is low
Increasing detector size/efficiency only increases amplitude of signal, not SNR

Some tricks can be played to increase SNR, but still do not work beyond 10’s of meters
Neutrons can be shielded with hydrogenous material, gammas with high-Z material

Passive

Low S/N & Limited range

Limited targeting

Easy to shield against

Difficult to identify materials

Active

Flux determines S/N

With directed source (ICS), long
range and target pin pointing possible

Very difficult to mask and can be
combined with neutrons

Specific materials can be identified
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Photofission Is a promising means of detecting
SNM with high confidence.

O 6+ MeV)gammas induce fission in actinides

® Prompt neutrons and gammas immediately emitted 2

® Fission fragments decay, emitting delayed gammas and neutrons @.\
P .
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Nuclear Resonance Fluorescence (NRF) is also of interest
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NRF has similar requirements...

£~10-5

Nuclear Resonance Fluorescence
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Active interrogation requires time intervals to count
delayed products
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bremsstrahlung is ill suited

Bremsstrahlung ICS

Local (target) radiation Directed radiation beam

High spectral density &

Low spectral density brightness

High background signal Excellent S/N

Easy to do Hard to do
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Producing gammas for photofission is easy;
Producing a source with good S/N is hard
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An ICS Gamma Source (IGS) is the best path for
photofission standoff detection

fieldable source of
bright
monoenergetic
beam of photons
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The IGS performance requirements are severe

Up to 10"3, 10 MeV gammas/sec

Producing 10 MeV gammas requires
~500 MeV electrons

y £ e (assuming green drive laser)
Ground s o
Vehlcle‘ A . 2 = . . UAV GAMMA DETECTOR
" |4 need 1010y/s
SOURCE LAND SEA

GAMMA DETECTOR

need 103 y/s
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The IGS specifications are ambitious and demand
advancements in several areas

Parameter Value
Laser Pulse Length (FWHM) 10 ps
Laser Wavelength (frequency doubled) 532 nm
Laser Pulse Energy 620 mJ
Laser Strength Parameter (ao) 0.06
Laser Rayleigh Range 1.28 mm
Laser/E-beam Spot Size (rms) 7.4 um
E-beam Energy 547 MeV <:
E-beam Beta Function 29 mm
Number of Gammas per Micropulse 1.0 X 10°
E-beam Charge 1 nC
E-beam Emittance 2 um
Number of Photons per Micropulse 2.0 X 10°
Number of Photons per Macropulse 2.0 X 10™
Peak flux at 1 km stand-off [m2-s] 8.9 X 10"
Average flux at 1 km stand-off [m2-s] 8.9 X 10
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Multibunch operation is critical to high flux, lbut
puts demands on the various subsystems

1kHz rep rate
100 e-bunches R
100 laser recirculations o Nounches.
Total cavity power = 62 kKW

of the RF period

Final focus
combines electron
and laser optics with
feedback

diagnostics
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The IGS effort at RadiaBeam and UCLA involves
developing four core technologies

high repetition rate photoinjectors high gradient accelerator structures

Multibuch interaction schemes
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An |GS approach has not been proven to work.
A POC experiment is needed

=i RadiaBeam is funded (DOE Phase Il SBIR) to

Interaction )
point e carry out a test an BNL's ATF.
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2roving gamma-ray production and flux
levels requires >> 100 MeV beam energies
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Gamma ray production at the A

PS5
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The APS Injector linac Is a capable test bed

Visible Light Diagnostics (VLD)

UV Drive
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| Thermionic
.9 o 1 0 Compressor b Linac
‘ s A A \ Linac,
Dipole {04! " A AL AL T S NEAN Tbefe;m -
p— z.m.._I!I. - S, ’
“ : m - 217-500 | 150 < PC
‘ ‘ g o MeV {  MeV Alpha rf
Undulators 1-9 v\ | Magnet Gun
| ‘ and
\C/)@!EL _/ E - Streak ~ CTR/ Scraper
SU " VISt 3-Screen Camera CDR
e pectrometer Emittance Measurement Monitor
am i
S Measurement A. Lumpkin

Spectrometer

old LEUTL tunnel
good site for |ICS interaction
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The APS injector already possesses the necessary
beam parameters for gamma-ray production

Parameter Value

Electron Beam Energy 500-700 MeV

Energy Spread 0.1% energy spread
Bunch Charge 500 pC

Electron Beam Emittance 5 mm-mrad
Transverse Spot Sizes 20 micron e-beam and laser spot
Electron Beam Bunch Length 4 ps

Laser Pulse Length 6 pSs

Laser Wavelength 1053 nm

Laser Energy 20 mJ
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At 500 MeV, simulations show significant flux up to
4.5 MeV photons (at laser fundamental).

Photon Flux: 3x10/6

. 500 MeV
1.5 -
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At 700 MeV, one can reach almost 9 MeV photons
(at laser fundamental).

Higher brightness
Same Photon Flux: 3x10/MN6
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Reducing the emittance, and hence the spot size
“cleans up” the spectrum
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Gamma production requires some additional
hardware to be installed after the linac

Ingredients:

Some quads

Interaction Box

Laser amplifier

Gamma detector
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The old LEUTL tunnel can house an ICS interaction
area and more

i

1
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N\ /]
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The APS Linac can be used to produce a
significant gamma-ray production test




|ICS based Gamma-Gamma colliders have been
considered

v-Y Collisions of High Monochromaticity &

Luminosity can be achieved

Spent electrons deflected
size for hard ¥

in a magnetic field \
Final N — Sl

Focus System

ii

3 = ——
Wit
x\'\x‘\-\_\lﬁ‘:w Spot size for soft y

Polarized laser beam

Polarized e-beam
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|ICS based

Positron production Is promising

N | <= S pin |
‘ o Tungsten )
0./ — @ - ==
— -
e beam I \

Pair creation

Compton scattering

(Source: M. Fukuda, et. al.)
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THz Production
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N experiment at UCLA produced narrow band
z from dielectric tubes

Experiment Alan Cook (UCLA)

» Short beam coherently excites wakefield in capillary tube
* Only lowest-f waveguide mode excited
* Measure power spectrum and radiated energy

Measured Power Spectrum, b = 350 um

— >

Selling Points

e Narrow bandwidth e High peak power (10° - 107 W)
e Variable pulse length ® Simple, cheap structure

e “Tunable” * Implement w/ existing beams
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Production of THz I1s of interest for a number of
flelds

- Why THz radiation?
- ~100 GHz - 20 THz
- Imaging applications
- Spectroscopy applications

- Why narrow-band source?
- Specific f application
- Efficient energy conversion

Non-beam-based THz sources:
frequency mixing, quantum cascade
laser, optically-pumped THz laser, etc.

THzNetwork.org
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Wakefields excited by a relativistic electron beam
generate THz radiation via Coherent Cherenkov.

conductor

Cherenkov
dielectric ///< \\ radiation

Beam couples to E, field

“Slow wave,” efficient beam-radiation energy exchange
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Conductor___
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ne experimental apparatus allows for detailed
naracterization of the emitted radiation
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This method of THz production has simple scale
laws

Inner radius as small as possible: The smaller rules of thumb
the bore, the higher the coupling field and the

higher the radiation power.

Conductor

Higher charge and shorter
bunch length (coherence)
yields higher power

The strongest knob for tuning the The dielectric constant also
frequency is the wall thickness: changes the frequency.
thinner wall, higher frequency. Of

course, then you need a shorter

bunch to get coherence.
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THz production at the APS linac
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At the APS the nominal beam can reach 0.5THz at

almost a MW peak power.

Case 1: nominal HDPE

(e, = 2.25) f =400 GHz
Beam c,= 500 fs 315 ym -
Parameters s =30 um 150 pm | Ppeak ~ 690 kW
Q=0.25nC o
I=500A BW ~0.7 %
v= 1000
e, =5 mm-mrad 10 cm Pulse ~ 350 ps
B-function = 18 cm
Case 2: ultrashort bunch
f=145THz
130 um ¢
II:B)eam ters O o0 100 m“ ' Ppear ~ 350 kW
arameters Q = 50 pC um |
| =800 A BW ~ 0.3 %
10 cm Pulse ~ 200 ps

the thermionic gun can drive short bunches
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Tunable, narrow lband, ultra-high peak power THz
generation at the APS linac would be straightforward

Ingredients required:

1. tube

2. holder
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