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X-ray Reflection Interface Microscopy:

Elementary Step:

Intensity contrast at a step:

Phase contrast 
mechanism:

*Fenter et al., Nature Physics 2(10) 700-704 (2006)



Step Identification by Intensity Contrast*

Step distributions on orthoclase (001) Identification of step height:
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Elementary step structure:

where Nc = step height

Sub-nm vertical sensitivity:
derived through variation of phase contrast
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- derived through variation of phase contrast
- highlighted feature is a monomolecular step (0.65 nm high)

*Fenter et al., Nature Physics 2(10) 700-704 (2006)



XRIM Control of Contrast: Step Contrast
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Reaction time:   0 min 15 min ([NaCl]=1 m, pOH 2, 84°C)

Applications: Observing Orthoclase Reactivity (ex-situ results)*
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Fraction of surface that is reacted is comparable to p
the rate observed in real-time in-situ measurements

 Reduction in reflectivity in reacted regions indicates 
multi layer dissolution processmulti-layer dissolution process

*P. Fenter et al., Geochimica et Cosmochimica Acta 74, 3396-3411 (2010)

(Images obtained at L = 0.25 r.l.u.)



Applications: In-Situ Imaging of the Orthoclase-Water Interface*:

Orthoclase, 
KAlSi O (001)KAlSi3O8(001)
0.1 m NaOH

“Lifetime” of orthoclase-aqueous interface
(continuous exposure in the XRIM beam)

Observation
Trend line

 Damage is mediated by radicals formed within a diffusion length of the surface
 High ionic strength reduces radical lifetime and decreases damage

*Fenter et al., J. Applied Physics, 110, 102211(1-9) (2011).



Applications: Imaging Bi2O3 Polymorphs on SrTiO3 (001)*

Directly observes different lateral distributions of structurally-distinct 
but compositionally-identical phases (-Bi2O3 and -Bi2O3)

Contrast from thin-film diffraction

Si il bilit ill b d t d t d l ti fSimilar capability will be used to understand nucleation of 
polymorphs from solution (e.g., calcite vs. aragonite)

*Proffit, Zhang, Zschack et al., unpublished results



Opportunities with XRIM

A new capability combining:
- exquisite structural sensitivity of interfacial X-ray scattering

topography, thin films, etc.
- high spatial resolution of X-ray microscopyhigh spatial resolution of X ray microscopy

A non-invasive structural tool (no probe tip):
- in-situ observations of interfacial structure/topography
- reactions in aggressive chemical conditions (extreme pH corrosive gases)- reactions in aggressive chemical conditions (extreme pH, corrosive gases)
- elevated temperature
- buried interfaces
- lateral elemental distributions (through RAXR)

- ion adsorptionion adsorption
- precipitation of nano-phases

- real-time studies of interfacial processing
- growth dissolution etchinggrowth, dissolution, etching…



Poor Time Resolution:

Challenges with XRIM1

Poor Time Resolution:
- intrinsically small interfacial reflectivity (10-5)
- low efficiency of FZP optics (~5-10%)
- reduced contrast due to 2-fold mismatch of n.a. increases imaging time by 4x.  

Beam Damage:
- High x-ray flux density at sample induces radiation chemistry (in water).

Spatial Resolution:Spatial Resolution:
- Achieved resolution of 170 nm (compared to expected resolution of100 nm)

S b t ti l i t i biliti t d ith ti dSubstantial improvements in capabilities are expected with an optics upgrade 
(now underway) for XRIM2, including:  

- improved image acquisition time
- improved resolutionp
- improvement in image contrast



XRIM1: X-ray Flux Diagram
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 XRIM is “photon starved” but feasiblep



XRIM2: Increasing the Useful X-ray Flux
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Net improvement:  28-fold improvement of image acquisition rate
~7-fold improvement of useful X-ray flux on sample (~seconds instead of ~minutes)

4 fold reduction in image acquisition rate (i e reduced beam damage) due to~4-fold reduction in image acquisition rate (i.e., reduced beam damage) due to 
matching NA of optics (i.e., improved contrast).
- 50 nm spatial resolution (from 170 nm)



XRIM2: Impact of More Flux:

Orthoclase(001) Reflectivity

Accessible range 
of reflectivityof reflectivity 
signals
(XRIM1)

Newly accessible 
range of reflectivity 28x
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g y
signals (XRIM2)
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XRIM3: Increasing the Useful X-ray Flux
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Net improvements w/r to XRIM2:
~Additional 10 to100-fold improvement of useful X-ray flux on sample
~5-10-fold increase in objective lens efficiency (i e faster image acquisition rate5 10 fold increase in objective lens efficiency (i.e., faster image acquisition rate 
and reduced beam damage)
 50-1000-fold faster imaging w/r to XRIM2;   << 1 second per image



XRIM3: Monochromator Bandwidth vs. Reciprocal Space Resolution
E/E = 10-4 E/E = 10-3 E/E = 10-2

L = 2.5 rlu

L = 1.5 rlu

L = 0 5 rluL = 0.5 rlu

Effect of chromatic broadening minimal for E/E = 10-3 for Q< 3 Ǻ-1

Beam width of E/E = 10-2 is useful for Q < 0.5 Ǻ-1



Outlook:
Substantial improvements in time and spatial resolution are expected with 
future upgrades to XRIM designfuture upgrades to XRIM design

XRIM2:  ~28-fold faster image acquisition time
>3-fold improvement in spatial resolution
~4-fold improvement in image contrast

XRIM3: (improvements w/r to XRIM2):
~10 to100-fold improvement of useful X-ray flux on sample10 to100-fold improvement of useful X-ray flux on sample
~5-10-fold increase in objective lens efficiency (i.e., faster image 
acquisition rate and reduced beam damage)
 << 1 second per image

XRIM4:  Coherent XRIM/CDI system?  
These upgrades will enable in-situ, real-time observations of dynamic 
processes at interfaces, e.g., dissolution, growth, etc.processes at interfaces, e.g., dissolution, growth, etc.
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Thank You!Thank You!





Imaging Laterally Structured Thin-Films: BiFeO3/SrRuO3/SrTiO3 (001)*
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*J. Klug et al., unpublished results

- Use thin-film Bragg diffraction to spatially resolve nano-dot structure



Probing Interfacial Reactivity at the Orthoclase (001)-Electrolyte Interface
XR Observations of Orthoclase Dissolution

Orthoclase, T=23°C, pH = 1.1
Atomic Force Microscopy:

Orthoclase, T=23°C, pH = 12.9

*H. Teng et al., GCA 65(20), 3459-3474 (2001)



Observation of Step Distributions with XRIM*

Step distributions on orthoclase (001) AFM of orthoclase KAlSi O (001)Step distributions on orthoclase (001) AFM of orthoclase, KAlSi3O8 (001)
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Elementary step structure:

Imaging Conditions:
 = 1.4°
E = 10 keV
L = 0.25 rlu (Q = 0.24 Å-1)

0.65 nm0.65 nm0.65 nm0.65 nm

( )
Sample in air



Reaction time:   0 min 15 min ([NaCl]=1 m, pOH 2, 84°C)

Observing Orthoclase Reactivity (ex-situ results)*
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Fraction of surface that is reacted is comparable to p
the rate observed in real-time in-situ measurements

 Reduction in reflectivity in reacted regions indicates 
multi layer dissolution processmulti-layer dissolution process

*P. Fenter et al., Geochimica et Cosmochimica Acta 74, 3396-3411 (2010)

(Images obtained at L = 0.25 r.l.u.)


