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Complexity in Nonequilibrium Materials Processing

* Nonequilibrium processing is in a sense redundant, but emphasizes the
often far from equilibrium conditions used, e.g. extreme conditions

- Developing materials with desired properties outside known envelopes
has long been through the discovery of new and innovative processing
methods guided by intuition and the accumulated understanding of
physical principles

- Discovery is great when it happens, but it relies on serendipidy and
becomes increasingly rare in complex and mature technologies

- The nature of this process is not likely to change dramatically; however,
the level of understanding of the underlying physical principles
required for continued technological advances increases inexorably
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Probing Complexity associated with Nonequilibrium
Materials Processing

* Probing materials processing steps involving significant levels of complexity
within ultra-short times, strong deformation, and strong time, pressure, or
temperature gradients is likely to require high temporal resolution, high spatial
resolution, or both.

- Understanding complexity to the extent needed to predict or control desired
materials processing results is likely to entail concommitant high fidelity, ultra-
scale computational simulations and modeling as well as new and novel
measurement capabilities

- This presentation will recall briefly x-ray source and time-resolution history

* The talk will consider nonequilibrium materials processing associated with:
- Pulsed-laser processing/ablation
* Pulsed-laser film deposition and growth
* Plastic deformation and formation
- Atomic dislacement cascade dynamics and evolution
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Relative Brilliance of X-Ray Sources

Historical View of X-Ray Source and Time-Resolution
Capabilities circa 2000
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Pulsed Laser Processing:
Melting — Ablation — Deposition

 Pulsed laser heating and melting have been the
subject of intense interest and remarkable
progress on fundamental levels

- The ablation process is both more complex and has
received much less attention

- Ablation is the basis of pulsed-laser deposition
(PLD) film growth for many complex
materials (e. g. oxides)
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Time-Resolved (5 ns) Measurement of Interfacial Overheating and Undercooling
During Pulsed-Laser Melting and Regrowth in Silicon
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Modeling The Pulsed-Laser Ablation/Spallation Process

short pulse laser irradiation
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Schematic of an ultrashort laser induced pressure pulse
penetrating into the surface of metal and ejecting a liquid

surface layer.

The ablation/spallation process,
the kinetic energy, the
temperature, and clustering
characteristics of the ejected
material is critical for optimizing
pulsed-laser deposition film
growth

Molecular dynamics :
simulation of rapid laser{
pulse heating and void | £
nucleation and growth
below the surface in Ni
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Zhigilei et al. Proc. SPIE 5448, 505 (2004)
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Potential to Study Non-Equilibrium Pulsed-Deposition-Growth on Surfaces

Pulsed-Laser Deposition and Growth
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Deformation and Formation

- Deformation cannot be predicted from first principles at
low or high rates

- Shock deformation has long been of weapons related
interest and was an early driver of time-
resolved x-ray investigations

- Shock formation is of civilian materials processing
interest as well
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Shock Loading Investigations Have Driven Many X-Ray Time-Resolution Advances

Picosecond Resolution Shock Loading Strain Measurement

T T

T
NoShock# . Measured
: ' y 66 ps FWHM
120 + 10 psec
- ~ i
Shocked A : ?;rr?’tg;‘[

—_
+
<

uorssarduwo)

uoisud] uoissaidwosn uoisuad]l uoissaidwo)

=
I+
(=1

uoISuay,

Tensile Material

(>
f %
o
£
=
Elastic Strain (%)

'
=)

Uncompressed

Material
1
Calculated
4 @9 60 ps FWHM
Large L.
angeeamaser <@——X-Ray Line Emission ?
Tight Focus §3
5 um Foil Lasfeam %0
) Ezs
=6
) . . 91 4 I 1
Picosecond resolution streak camera recording both 00 0 00
compression (direct wave) and tension (reflected wave) Time (ps)
~120 ps after a 66 ps laser generated shock wave After Whitlock and Wark, in Time Resolved Diffraction,
reaches the front surface at t = 0 ps. ed. by J. R. Helliwell and P. M. Rentzepis (Clarenden

Press, Oxford 1997) p. 106
Evolution & Control of Complexity




First principles based (bottom-up) investigations of deformation
Using molecular dynamics, discrete dislocation dynamics, and
Statistical dislocation theory call for an entirely new level of
experimental information

* Techniques for simultaneous temporal and spatial
resolution are needed to address the type
of detail provided in such simulations

* The irreversibility of deformation renders present
~100 Hz data sampling rates too confining

MD simulation of Fe shock loaded along [001]
demonstrating phase change (red), dislocations
(yellow), and unshocked region (grey)

[40 x 40 x 50 nm?]

Kimminau et al, J. Phys. Condens. Matter 20, 505203 (2008)
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Structure and Dynamics of Atomic Displacement
Cascade Dynamics

- Displacement cascades are the primary mechanism of
fast neutron and ion irradiation

- The time scales of cascades range from sub-picosecond
generation to picosecond - nanosecond
annealing, evolution on microsecond —
millisecond time scales, and accumulation to
giga-seconds (40 years) in reactor service

- Because of the sub-picosecond time scales involved in
the generation of cascades, the dynamics has
remained the domain of molecular dynamics
for more than 50 years
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Dynamics of Irradiation Induced Defects

Point defect generation,
Close pair annihilation

Point defect diffusion

and aggregation
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Molecular Dynamics Simulations of Displacement Cascade
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Experimental Measurements of Cascade Dynamics and Evolution Will

Be Possible for The First Time Using Sub-Picosecond X-Ray Pulses
At The LCLS and Diffuse Scattering from The Transient Strain Fields

CDP-EFRC ORNL
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Time-Resolution from Subpicoseconds to Milliseconds

\ lon gun
lon dun N Laser Pulsing; ]
| R Single lons Focusing

/ Focusing

Pulsing =/
~ns ‘ lon
Pulsed Pulsed X-Ray
X-rays X-rays Focusing
A 4
AN
\ \
100 fs Cascade 100 fs Cascade
Nanosecond to millisecond ion pulses Subpicosecond to nanosecond resolution
by sweeping focused ion beam by ion time of arrival signal
(APS/LCLS) (LCLS)
CDP-EFRC ORNL

Evolution & Control of Complexity




Diffuse Scattering Analysis of Cascade Dynamics-Evolution
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Concluding Comments

- Toward the goal of transforming materials processing
into a predictive rather than a discovery issue:

* Increasingly detailed temporal, spatial, and
energy resolved structural information
will be required in close connection with
first principles based theory and modeling

* Increasingly close coordinations between facilities
and scientific users will be required

- A hierarchy of user facilities will be required to
match sources with experimental requirements
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