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What are the fundamental physical processes
involved in thin film deposition?

It depends...

Two Limits: Thermal and Energetic



Example: Thermal Deposition

Molecular Beam Epitaxy
(MBE)

“hot" crucible

substrate
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Example: Energetic Deposition

| (Biased) Sputter Deposition |

o

Plasma etches target

Sample
bias
voltage

substrate
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Study both with Pulsed Laser
Deposition (PLD)

Heater

T=600-1000°C

Film

Vacuum Chamber

Base Pressure ~1028 T
w/Process Gas ~101 T
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Substrate
SrTiO,

Plume
La,Sr; ,MnO,




CONDENSED-MATTER PHYSICS

Complex oxides on fire

Oxide materials have long been known as hosts for exotic and useful physical properties.
Recent acvances in their design and fabrication establish the means to tailor their response
for applications.

Yoshinori Tokura and Harold Y. Hwang matizre wariesinis | VOL 7| STETEMARR 2608

e Ferroelectricity

e High dielectric Permittivity
e Superconductivity

e Colossal Magnetoresistance
* Ferromagnetism

e Multi-ferroic devices

e 2D electron gas

A. Ohtomo, et al, Nature 419, 378 (2002).

October 11-13, 2010 Evolution and Control of Complexity 7



Physical Problem

The problem of studying energetic deposition is
extremely challenging due to

— Length scales vary from atomic to macroscopic
(e.g., from A to 10’s or 100’s of um)

— Time scales vary from collisions which last for
roughly one picosecond to layer completion times
on the order of several seconds. (10?)



X-Ray Reflectivity (specular)
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Consider Impact of Plume on Substrate

Assumptions:
1. Impulse approximation
2. Atoms land at random locations on surface

— = —40(1— (7)

o = (# of pulses per layer)?
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Intensity [arb. units]

PHYSICAL REVIEW LETTERS week ending

PRL 96, 176102 (2006) 5 MAY 2006
Energetic Surface Smoothing of Complex Metal-Oxide Thin Films
P.R. Willmott,* R. Herger, C. M. Schleptitz, D. Martoccia, and B. D. Patterson
Swiss Light Source, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
(Received 19 January 2006; published 2 May 2006)
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Argues that “island break up” is responsible for smooth growth during PLD.
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Scattering Geometry

7 ND - 27/

"E ;' * QPeak

Q2 3 »

210t ; -

2z J !\,.

= o 5

g [w™ e My
0.1 0 0.1 0.2

QII linv. Ang.]

200 ms Time Resolution

* Optimum between diffuse signal
and thermal background

g, =0.275 r.l.u.

October 11-13, 2010 Evolution and Control of Complexity 15



Atomic Force Microscopy
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Excellent real space images of small number of stationary islands.
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Time-resolved Diffuse Scattering
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Best Fit Parameters
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No jump in spacing between islands as laser fires. Therefore,
island break up isn’t significant in this particular case.
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What don’t we know?

 What happens during plume collision?

— Preliminary tr-fluorescence data (not shown) indicates different
species arrive at distinct times.

— tr-current data (not shown) indicates shock waves in plume.

— What are effects on nucleation, aggregation, coarsening at early
times?

— How fast is fast?
— Would like to perform XPCS on fast time scales
e How to understand diffuse scattering data obtained at
coalescence?
— Transition from islands to circular pits or to long thin valleys?
— Tr-Coherent diffraction?



What would we like?
e Pulse Length

Time scale for rearrangement of atoms is 1
picosecond. (k=1eV/a?, a = 3A, m=102°kg)

T, =27(k/m)* ~1ps

e Pulse Intensity

For short pulses, energy deposition is adiabatic.
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What would we like?
* Repetition Rate

Want to keep flux of modern 39 generation
sources (radiation damage makes higher fluxes
less useful).

1013-14/second —>|Repetition rate ~ 1-100 MHz

 Wave length

For atomic resolution structural studies need
A< 1.5A

e Coherence (focusing)
Diffraction Limited




Next Steps: Going beyond line-shape
analysis for diffuse scattering

00)

Lurs (@ ©) = 272 f odp Jo(qup) (5100, D8n(p, D))
0

G(r,t)=(sn(0,t)Sn(r,t))

G(r,t) is maximum amount of information available
In a scattering experiment
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Summary

Need to push both time- and length-scales of
our measurements to make progress.

Moving away from periodic systems.

Non-destructive, structural studies of
biologically, chemically, and technologically
relevant materials put tight constraints on

properties of p

For sources to
need to heed t

noton beams.
nave wide and deep impact,

nese constraints.
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