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Energy Conversion Strategies
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Multiple Temporal Scales in Solar Energy Conversion
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The dream: “Seeing” molecules along reaction coordinates, and being able to
understand and control reaction pathways.
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Fig. 3. Current XTA setups at Beamline 11-ID-D of the APS (LITR, laser-initiated time-resolved). The laser room (left) has
three operating modes, 1) XAS/WAXS(wide-angle x-ray scattering), 2) nanosecond photolysis, and 3) picosecond pump-
probe transient absorption, marked by a solid line, a thick dotted line and thin dotted line, respectively. The x-ray hutch
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Outline

B Studying ultrafast structural dynamics with
ultrafast lasers and x-rays

B Light conversion by metal complexes
B Light conversion at interfaces (New)

B Light conversion in nanoscale organic
photovoltaic materials (New)

B Control reactions by light
B Perspective




Light conversion by metalloporphyrins
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Light conversion by metalloporphyrins

Electronic transitions
Spin state transitions
82’ Coordination changes
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Light conversion by metalloporphyrins
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Photocatalysis dynamics of Pacmanporphyrins

In the absence of the substrate:
Capturing high oxidation Fe(IV)
(a key reactant in understanding
the mechanism, implication in
enzymatic reactions).
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Photocatalysis dynamics of Pacmanporphyrins
Pacman photocatalysis and intermediate structures
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Light conversion by transition metal complexes

e e'a_/—l_ M. Gratzel, Nature 2001, 414, 338-344.
S*/S 3
B. O'Regan, M. Gratzel, Nature 1991, 353, 737-740

Photoinduced metal-to-ligand-charge-transfer (MLCT)
[Ru'!(bpy)s]+2* [Ru'"!(bpy)(bpy),]*  Expensive!
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Light conversion by transition metal complexes
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Light conversion by transition metal complexes
Ultrafast transient absorptlon of Cu(l)(dmp)2+
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Franck-Condon

S;at.e - 0.5 —-15 ps (to be studied by shorter x-ray pulses)

e ..)

MLCT State—
“Flattened” MLCT State—

(‘ .. <100 fs Y Solvent complex
v, = "

L\




Solute-solvent interface structural dynamics

LITR-XAS probes inner sphere:
Metal oxidation state | |
Coordination geometry
Electronic structure

Molecular shape
Interactions with solvent
Pair density distribution functions

Combined LITR-XAS/WAXS with results of WAXS on Cu(dmp),*(Tiede)




Solute-solvent interface structural dynamics
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Interfacial Structural Dynamics in Solar Electricity Generation
™ .
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Interfacial Structural Dynamics in Solar Electricity Generation

Photoinduced
electron injection from
a dye molecule at the
organic-inorganic
interface.

Prof. Victor S. Batista
Chemistry Department
Yale University

Calculated snapshots of
the instantaneous
electronic iso-density
surface at intervals of
2.5 fs during the photo-
induced interfatial
electron transfer in a
functionalized TiO2
semiconductor
nanostructure.




Interfacial Structural Dynamics in Solar Electricity Generation

Octahedral Undercoordinated Octahedral surface states
bulk surface states after modifica 'i'»
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Interfacial Structural Dynamics in Solar Electricity Generation

At Molecular Heterogeneous Catalysis :
Level... Photocatalytic Reaction of H,O
Splitting over Pt/TiO,

Activation
Transition Reconfiguration Red (H,)
Ri....R,
State +
H
Pt
Ox
Adsorption
Desorption
Intermediate
Ox (O,)

Red

M. Anpo, Bull. Chem. Soc. Jpn, 2004

Energy Diagram along Catalysis Pathway




Interfacial Structural Dynamics in Solar Electricity Generation

Plech et al. Eur. Phys. Lett. (2003)
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Novel nanoscale organic photovoltaic materials

* Light absorption by D and A;

 Charge separation within covalently linked D-A;

 Charge carrier hopping through the r-1r
stacked pile formed by SA;

« Charge collection though TCO electrodes;

* Prototype devices.




Novel nanoscale organic photovoltaic materials

The quartet D-A in solution: Energy levels
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Novel nanoscale organic photovoltaic materials

DA flims with difforent molecular arrangomenis

1. Random mix 2. Linked

o] R N e,

3. Linked polymer



Novel nanoscale organic photovoltaic materials
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Interfacial Structural Dynamics in Solar Electricity Generation

Correlating domain, molecular packing and local molecular structure with energy
and electron flow in organic and hybrid materials during PV function with steady-
state and ultrafast pump-probe NEXAFS and WAXS/SAXS
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Perspective in Application of Short X-ray Pulses

The short X-ray pulse generation will open up a new regime in studying
solar energy conversion structural dynamics (i.e. vibrational relaxation) as
well as fundamental photochemical and photophysical processes in
general (Slicing+Compression???, kHz repetition rate)

The short X-ray pulses will enable some coherent control and multipulse
excitation experiments coupling laser and x-ray pulses to reveal
structure/function correlations;

The energy tunability is an unique advantage at the APS in comparison
with XFEL sources in providing spectral coverage and resolution
necessary in detecting electronic and nuclear geometry on ps time scale;

Theoretical studies coupling the experimental studies are important;
Synchronization scheme on ps scale is crucial;

The capability of accommodating multiple users and much lower costs
compared to building a new source need to be emphasized in the
proposal.



