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Beam conditioning (Sessler, Whittum, Yu, 1992): parabolic radial profile of

energy
Ay = ky(Jp + Jy)

where J,, and J, are normalized actions, (J,) = eng.

Useful parameter, a



For LCLS, the nominal § = 18 m,
Ky = 5.8 pm™ !, a = 130

For the nominal emittance 1 micron, AE =5 MeV.

For natural focusing of the undulator, 8 = 72 m, one needs conditioning 4 times

smaller.



Doing conditioning before compression requires less correlated energy spread

O-Z’LL

K = Ky
0z

The parameter a does not depend on o,.

In the LCLS, the compression factor o, /0., =40 (6, =1 mm, o,, = 24 pm).



A. Sessler: if we have a conditioned beam ...

e larger transverse emittance can be used in emittance limited SASE FELS

with the same performance

e or one gets smaller saturation length for the nominal emittance



LCLS, vary emlttance optlmal A
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Power (W)

Greentield FEL at 28 GeV
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S. Reiche: effect of overconditioning and underconditioning
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How do we condition the beam?
1. TM319 mode cavities in a lattice (Sessler, Whittum, Yu).

2. Using solenoids and RF-cavities (Emma, Stupakov).

‘Two-Phase’ FEL Conditioner

k|3 > 1, |k|L = nr.

€ m=>

It turns out that this system gives a nasty side effect—Ilarge growth of the
projected emittance, €f/¢; ~ a for single-phase, or even €¢/¢; ~ a® for a full
conditioner. It is due to a large mismatch of the slices of the beam introduced by

the conditioner.



A. Wolski showed how to make conditioners that are matched. Hamiltonian:

The side effect of this conditioning is benign—phase rotation of slices of the beam.

3. RF cavities + chromatic FODO beamline RF
4. TMi10 mode cavity + sextupoles

The problem is that those conditioners are very weak, K ~ 4 x 107% ym~—! —

many passages — idea of the ring.
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Unconventional approach to conditioning (Sessler, Esarey)

5. Laser backscattering

E-beam ﬁ

Pro: the process is not Hamiltonian, no side effects
Con: need large number of scattering, but the Thompson scattering cross section
is small; heat the beam

6. LWFA Conditioner

laser pulse

Ex

-«

>
% highne <™ low ne

Pro: requires smaller laser energy

Con: large radial electric field, conditioning varies along the beam, more complex



One can do gentle conditioning even in unmatched system (Emma, Stupakov).
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What needs to be done?

1. SASE FEL theory and simulations
e 1D theory of SASE FEL for conditioned beam (S. Reiche)

e Simulations: overconditioning and underconditioning; vary beam emittance;
include possible increase of the energy spread during conditioning;
longitudinal variation of conditioning within the bunch; transverse coherence

of the conditioned beam.

e Suppression of space-charge and CSR induced instability due to correlated

energy spread
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2. Continue work on conditioning techniques and identify the most promising
candidate(s)

e A concept of ring conditioner seems very promising since conditioning in one

stage/cell is relatively minor

e Better understanding/demonstration of the effect of emittance growth during

conditioning, reconcile it with matched solutions of A. Wolski (K.-J. Kim)

e Are there any fundamental limitation of conditioning from Maxwell and

Hamiltonian equations?
e Look more carefully at compression of conditioned beams

e S2F simulation of FEL with conditioner
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3. Design of a proof of principle experiment

e Ring design of a ring based conditioner (energy, lattice, beam dynamics

issues, etc.)

e Diagnostic of conditioning. Undulator radiation, a specialized energy analyzer
(tomography).
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Manipulation of 6D phase space of the beam

Emittance exchange: horizontal < vertical, longitudinal < transverse. The latter

would open new horizons for FELs ...

A good subject for the next ANL Theory Institute!
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