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New High-Heat-Load Front End for Multiple In-line Undulators at the Advanced Photon Source
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Table 1IXS-CAT and Nano-CAT Front-End Component Apertures
Compared to FE v1.5 [3]

Exi sk _Tungsten Collmsor -
Boam Position Monitor Beam Position Monitor —— R | Aperture (mmxmm) IXS FE Nano FE FE V1.5
ABSTRACT Fis Photon Shuter Safety Shutter %7 First Fixed Mask (FM1) | inlet 38(H)x 47(V) | Same as IXS 38(H) x 26(V)
) cAE - . First Fixed Mask i Sccond Photon Shutter - outlet 20(H) x 47(V) | Same as IXS. 20(H) x 12(V)
A new high-heat-load front end is being designed to handle a maximum total power of 21 Pre-Mask Second Fixed Mask Lead Collimatr | Slow Valve | B Second Fixed Mask (FM2) | inlet 24(H) x 47(V) | Same as IXS 24(H) x 16(V)
kW with a pf:ak power densily of 5?0 kW/mradz. This i§ about 3.8 times the heat load 5 oot Third Fixed Mask| - Pump A m‘"'p‘ sk ipongsten Collimator et S ay) | Smeas XS T <6V
compared with current operation of a single 3.3-cm-perlod, Z.A-m-long undul.ator ‘ an m_&; ; g Third Fixed Mask (FM3) | inlet o) % 47(Y) | 9 < 47(V) 2150 x
(undulator A) at 100 mA stored beam current. This front end is scheduled to install for X 4 S 14(v)
IXS at APS sector 30 during September 2004 shut down and for Nano-CAT at APS sector A el mv&' - outlet 4(H)x2(V) | 4(H) x 3(V) 12.7(H) x
26 during January 2005 shut down. This front end will allow operation of three in-line PR . — — 220V)
undulators A at k=2.0 with 150 mA, or two in-line undulators A at k=2.76 with 180 mA. - o :H H: Lead Collimator f‘:"::x :(“) X lim Z‘“"e\ = ;iz ;?”) x f‘:(v"
In this poster, the overall front-end high-heat-load plan is di d and From APS D Stright Section Center - - _hedne |2 () 18(V) | Same as 0 “Mv)
. . . . First Photon Shutter (PS1) | inlet 10(H) x 47(V) | Same as IXS 20(H) x 20(V)
front-end layout and aperture design are presented. A new design concept is used in key 16M 17M 18M 19M 20M 2M 2M 1M 24M 235M 26M
. . outlet 5(H) x 47(V) Same as IXS
high-heat-load components such as photon shutters, fixed masks and exit mask to handle .
. B . . Fig. 1. Front End Layout For IXS and Nano-CAT at APS. Second Photon Shutter inlet 10(H) x 47(V) | Same as IXS. 20(H) x 20(V)
the high power density. The design and thermal analysis of these components are (Ps2) ™ S s x5
outle 47(V) | Sameas
presented. Safety Shutier optical 16(H) x 14(V) | Same as IXS. 16(H) x 14(V)
shielding 16(H) x 14(V) | Same as IXS 16(H) x 14(V)
Wall Collimator optical 20(H) x 14(V) | Same as IXS 32(H) x 20(V)
2. ANALYSIS AND DE SIGN shielding 32(H) x 26(V) | Same as IXS 38(H) x 26(V)
1. HIGH HEAT LOAD MANAGEMENT The design of FM1, FM2, PS1 and PS2 uses the same design concept. FM1 and it Mase '"‘el‘ ;”"' XIW) 3““*’ *2(47“" j”“‘ e
. 4 e outlet (H) x 1(V) (H) x 2(V) (H) x 2(V)
The layout of the front end is shown in Fig. 1 and the apertures of both IXS T e hgnzontal . T b el e R Be Window ouflet  |HE>2W | HExIV) | 36E)x26()
FE and Nano FE are shown in Table 1. As 'we e open position. An actuator installed at the downstream end of PS1 and PS2 can (Commissioning
. ; P : - only
: : actuate horizontally to shut the beam off. PS1 and PS2 are designed identically » 5 TSameas
undualtor front end design[1,2], the power density can be handled by a ey - z e Enit Tungsten optical L 4(H) x7(V) |SameasIXS 114(EH) x 7(V)
e R e s L (shown in Figure 2). The thermal analysis of PS1 for Nano-CAT is shown in Figure Gl a1 SR el bR TNN RS BiSvses L T RE
S y e : s < Y 3. The PS1 is made by brazing the left and right halves together. One half is made (Three UA, k=2.0, 1=150 mA, center of source is 1.25 m downstream of the center of
incident to the beam. This is because the horizontal size of the beam is e the straight section) and Nano FE (Two UA, k=276, I=180 mA, center of source is at
i e e o T e il of OFHC copper only. The other half, which intercepts the beam at the closed the center of straight scction), h=1.5 w/mm2°C, T,=25.6°C.
s i . 2 2 position, is made of OFHC copper with an explosively bonded Glidcop face plate.
long when the beam is incident to the surface horizontally versus wide and . : Distance | Horizontal | Total Power | Peak Max Max, von
A - : The design of FM3 and exit mask uses the same concept. Both of them are made by 10 Source | Incidence |  atthe | Surface | Temperature |  Mises
short when the beam is incident to the surface vertically. For a grazing ; 3 : i Angle | Component | mmeidence | (:C) St
incidence beam device like masks and shutters, the beam footprint can be Deding Bl mdnal hele s fou e () foume b st pediblonles olot e (Wa) | Power (MPa)
Shae i e un; i l;oo i machined into each half before brazing to form the desired aperture size. An ey
A 3 i £ ZpEn mm?
BoR R & . exploded view of the solid model of the IXS exit mask is shown in Figure 4. The ) 59 056 3730 oy 7% w01
governs the heat transfer characteristics. The FE design uses the following @ 2 z i .
strategies: two halves will be pinned together before brazing to ensure the precision of the (Nano) 17.2 0.86° 21070 303 242 418
slie . aperture. When FM3 or the exit mask is aligned to the beam, only the center portion |29 1665 | o9 5720 | 5L 236 04
a) Avoid beam vertical incidence — all masks and shutters have only beam : > : (Nano) 179 091° 21070 296 241 417
e of the beam will pass through the aperture, the outer portion of the beam will be FN3 (XS) 725 | ose 279 73 s 70
b) Avoid traditional iJOX e Haee A Paed i d e o e absorbed in the horizontally tapered surfaces. All fixed masks and photon shutters (Nano) 155 0860 16190 261 m e
aal P g & are water cooled with wire coil inserts to enhance the cooling film coefficient [4]. PSI (IXS) 19.05 1.0° 8800 258 22 377
me o : The total power, peak power density, thermal and stress analyses were calculated (o) | 203 Lo LA R 20 S
¢) Use thin Glidcop plate for beam striking surface to get the best material e Lol . in the FE. h I o PS2 (IXS) 2115 10° 8500 208 197 329
strength. Thin Glidcop plate has much higher yield and ultimate tensile gr dilihe ducd masks ahd pholun SHiters 0 oic By anc e toult are £ oplie i (Nano) 224 1.0° 11740 206 201 349
. . Table 2. Exit Mask 24.05 1.5° 8800 239 215 364
strength compared to thick Glidcop bars or rounds.[5] (IXS)
253 1.2° 11740 19.4 210 356
(Nano)
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