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Motivation

• Unique coherence-based experiments relating to holography, 
microfocussing and phase measurement

• Third generation synchrotrons produce very bright, partially 
coherent X-rays

• Fourth generation sources, pulsed sources
• Characterisation of spatial coherence is a high priority
• Coherence “degradation” by beamline optics? 
• Aim: develop theoretical and experimental program to  

measure the spatial coherence and phase properties of 
radiation 

• => Cohereometer
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Young's experiment (1.1 keV)

  Optic Axis

Effective 
Source

Young's 
Slits

APD and 
5 µm slit 

  8.01 m   1.07 m

20 µm slit separation
Experiment geometry (top view)

Young's slits (1.6 µm Au, 3 µm wide, 10 µm apart) 50 µm slit separation



Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Diffraction profiles and fitting 
• Energy  1.1 keV data                    fit to data

Young’s slit separation = 20 µm Young’s slit separation = 50 µm

µ12 =
Imax − Imin

Imax + Imin
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Coherence function at beamline 2-ID-B

Horizontal degree of spatial coherence |µ12|
measured 8 m from monochromator exit slit.
|µ12| is dominated by beamline optics

Energy          = 1.1 keV
Entrance slit = 50 µm
Exit slit          = 220 µm

|µ12| measured with 120 µm exit slit. |µ12| is
dominated by exit slit, producing sinc profile

  
wc = wslit

2  +  wsource
2( )

1
2

D. Paterson, et al., Opt. Commun. 195, 79 (2001)
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Coherence function dependence on exit slit

Exit slit at 200 µm Exit slit at 100 µm
Gaussian profile Sinc profile µ12 =

sin πσ∆
λz'( )

πσ∆
λz'
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Parallel measurement:
Uniformly Redundant Arrays

1D 2D

• All possible aperture separations occur with same frequency

• 1D URA equivalent to many simultaneous Young’s experiments

K. Nugent et al., Rev. Sci. Instrum. (1992)
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Experiments at APS

• Fast measurement of 1D and 2D coherence functions 
with URAs and CCDs (< 1 min exposures)

• Performed at APS 2-ID-B (soft) and 2-ID-D (hard x-ray) 
beamlines

• Measured with 8, 2.5 nm-rad electron beam emittance

• Obtain |µ12| by Fresnel inversion

1D URA (1.18 µm Au, 2.5 µm min. width)
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Coherent field from incoherent source

Observation PlaneSource Plane

y

x

z

ε

η

I(x,y) µ  (ε,η)12

µ12 ε,η( ) = eiφ  
I(x,y)e− ik xε +yη( ) / z dxdy∫

I(x, y) dxdy∫
van Cittert-Zernike theorem

I(x, y)  ∝  FT−1 µ12{ }Fourier-invert to obtain source size 
and shape (assumes symmetry)

P.H. van Cittert, Physica 1, 201 (1934)
F. Zernike, Physica 5, 785 (1938)
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Partially coherent field

Ipar r( ) =  G r /z( )Icoh r − r'( )d ′ r ∫

G  =  FT g{ }Ipar  =  G ⊗ Icoh where

g  =  
FT−1 Ipar{ }
FT−1 Icoh{ }

K. Nugent, J. Opt. Soc. Am. A8, 1574 (1991)
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One dimensional analysis

• Vertical diffraction profile collected during low emittance studies
• Energy =1500eV, diffraction distance =1.1 m, 1.21 µm thick 1D URA with 5 µm 

minimum slit size
• Solid line is experiment diffraction dashed line is simulation with real parameters 

including source size
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Reduced emittance studies

High emittance
σ_y = 21 µm   σ_y' = 3.9 µrad
Vertical emittance = 80 pm-rad

Low emittance
σ_y = 11 µm   σ_y' = 2.7 µrad
Vertical emittance = 28 pm-rad

Vertical Gaussian σ = 129 µm Vertical Gaussian σ = 113 µm
Beamline 2-ID-B, Energy = 1500 eV, sou rce to experiment = 60.3 m

Beam profile
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Reduced emittance studies
High emittance
σ_y = 21 µm   σ_y' = 3.9 µrad
Vertical emittance = 80 pm-rad

Low emittance
σ_y = 11 µm   σ_y' = 2.7 µrad
Vertical emittance = 28 pm-rad

Gaussian width:  17.3  +/- 3.6 µm Gaussian width:  26.5  +/- 4.5 µm
Source width = 180 µm at 8.0 m Source width = 120 µm at 8.0 m

Coherence function
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Spatial coherence function with phase URA

10 µm

50 µm 170 µm

90 µm

Coherence function measured at 8 keV, 43.4 m from slits of size
(a) 10 µm, (b) 50 µm, (c) 90 µm, and (d) 170 µm

J.J.A. Lin, et al., Phys. Rev. Lett. 90, 074801 (2003)
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Coherence "degradation"?

CCD image of Young's interference pattern with 10 µm slit separation at 1.07 m, 
using 1.5 keV x-rays. Image is 820 µm by 420 µm and fringe spacing is 90 µm.
Condition for full utilization of coherence by experiment:  daperture <  dspeckle
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Summary, future work

• Measurement of complete spatial coherence function of 
undulator radiation 

• Speckle effects and coherence “degradation”
• Agreement with theoretical expectations
• URA can completely map coherence function
• Two dimensional measurement possible
• Study evolution of spatial coherence in LEUTL

- Measurement point after each undulator
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