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T heoretical Model and Assumptions
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e Consider high-intensity ion beam with distribu-
tion function fi(x,p,t), characteristic radius r,
and directed axial momentum ~ympByc, propagat-
ing in z-direction through background population
of electrons with distribution function f.(x,p,1t).

e Ions have high directed axial velocity V, = B,
whereas electrons are nonrelativistic and station-
ary in the laboratory frame with fd?’ppzfe(x,p,t) ~
0. .

e Ion beam is treated as continuous in the z-direction,
and applied transverse focusing force is modeled
by

Fboc — -—fybmbwngL
in the smooth-beam approximation, where x; =

€, + ye, Is transverse displacement from beam
axis.



Theoretical Model and Assumptions
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e For ion-rich beam, the space-charge force on an
electron, F$ = eV¢, provides transverse confine-
ment of the electrons by the electrostatic poten-

tial ¢(x,t).

e Ion motion in the beam frame is assumed to be
nonrelativistic, with

D2 | vlpyl |62 <K vempfBpe

where ép, = p, — ’ybmbﬁbc, and yympBsc is the di-
rected axial momentum.

e Allow arbitrary space-charge intensity consistent
with transverse confinement of the ions by the
focusing field.



Theoretical Model and Assumptions
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e Analysis is carried out in the electrostatic approx-
imation where the self-generated electric field is

E*(x,t) = =Vé(x,t)
e The electrostatic potential ¢(z,vy,2,t) is deter-
mined self-consistently from Poisson’s equation

VQQZ/) = —47T€(anb — ne)

where ny(x,t) = [ Cpfi(x,p,t) and ne = [ &Epfe(x, p, 1)
are the ion and electron number densities.

e Assume that the ion axial velocity profile V,,(x,t) ~
By is approximately uniform over the beam cross
section. The self-generated magnetic field

B’(x,t) = VA,(x,t) X &,
is determined from
VZAZ = —471‘25655715

where the electrons are assumed to carry zero
axial current in the laboratory frame. (This as-
sumption can be relaxed.)



Nonlinear Vlasov-Maxwell Equations
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In the context of these assumptions, the electron
distribution fe(x,p,t) evolves nonlinearly accord-
ing to

3 5 9
- . Vo - — 3 fe(x,p,t) =0
{aﬁ" 2 tevs 8p}f(XP )

where —e is the electron charge, and v = p/me.

For the ions, the nonlinear Vlasov equation for
fi(x,p,t) becomes

8 8 ,
{-(,% +v- T (vemewgpX s + ZveV 1) - Bp.

}fb(X p,t) =0

823

Here, v = p/vymy; is the ion velocity, +Ze is the
ion charge, and ®(x,t) is the combined potential
defined by

w(X7 t) = ¢(X7 t) - ﬁbAz(Xa t)



Nonlinear Vlasov-Maxwell Equations

E %;% HRESEETON MaLn
FHAYGES INRERNORY

e The electrostatic potential ¢(x,t) and combined
potential ¥(x,t) = é(x,t) — BpA.(x,t) are deter-
mined self-consistently from

V¢ = —4me (Zb / d>pfy — / d3pfe>
2 (Zb 3 3
VoY = —4me ——Qfdpfb-—/dpfe>
Ty

-

e In Maxwell's equations for ¢(x,t) and ¥ (x,t)

ny(x,t) = / pfy(x, 1)

’I’Le(X,t) — /dgpfe(xvpvt)

are the ion and electron particle densities, respec-
tively.



Theoretical Model and Assumptions

e Under equilibrium conditions (8/8t = 0), treat the
ion and electron properties as spatially uniform in
the z-direction (8/9z = 0).

e In the stability analysis, assume small-amplitude
perturbations with z— and t—variati_ons of the
form

exp(ik,z — iwt)

where Imw > 0 corresponds to instability (tempo-
ral growth), afid k, = 27n/L is the axial wavenum-
ber, where n is an integer, and L is the axial peri-
odicity length of the perturbation. (L = 2« R for
a storage ring, where R is the ring radius.)

e Stability analysis assumes perturbations with suf-
ficiently long axial wavelength that

kfrg < 1.



Theoretical Model and Assumptions
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The assumption of long axial wavelength with k272 <
1 leads to several simplifications in the analysis of the
Vl0asov-Maxwell equations.

e The three-dimensional Laplacian V2 is approxi-
mated by
92 92
V2~ Ve =
dx? + Oy?

e The perturbed axial forces on the electrons and
ions, e.g., -

0
0z 0z

are treated as small in comparison with the trans-
verse forces.

e Two-stream instability will be strongest for high-
frequency perturbations and small axial momen-
tum spreads satisfying

w
— — Bpe

ka > UTh,

w
k-

where vy, = (2T, /vms) 2 and vye, = (2Te./me)t/?
are the characteristic axial thermal speeds.

> VTez

9



Nonlinear Viasov-Maxwell Equations
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e Assume that a perfectly conducting cylindrical
wall is located at radius r = r,, Where r = (z? +
y2)1/2 Impose the requirement that

[Eg]"'z"“w — [Ej]T':’Pw — [B;f]r:rw =0

e In terms of the potentials ¢(x,t) and ¥(x,t), this
gives

()b(,r — TUJ? 07 z7t> — O

¢(r — Tw,@,z’t) — O

where the constant values of the potentials at
r = 1, have been taken equal to zero without
loss of generality.

10



Equilibrium Vlasov-Maxwell Equations
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e Under quasisteady conditions, examine solutions
to nonlinear Vlasov-Maxwell equations with

9 _9 _ 90 _
ot 99 9z

e Viasov-Maxwell equations support broad range of
equilibrium solutions for the beam ions and back-
ground electrons of the general form

. Rlr,p) = Fo(Hip)Go(p:)

fo>r,p) = Fe(Hie)Ge(p:)

e Here, H;, and H,,. are the single-particle Hamil-
tonians defined by

1 1 ~
Hy, = Pl 4+ Swmewgr” + Zee[yO(r) — 9°]
Q’meb 2
1 -
H. = 5 pl —el¢’(r) — ¢°]
Me

where r = (22 4 3?)!/?, and the constants ¢° =
#(r = 0) and ¥° = ¥%(r = 0) are the on-axis
values of the potentials.

11



Equilibrium Vlasov-Maxwell Equations
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e The axial momentum distributions G;(p.) (j =
b,e) are normalized according to

/ dszj(pz) =1

where Gy(p,) is centered at p. ~ vympVs and Ge(p.)
is centered at p, ~ 0.

e Many choices of G;(p.) (j = b,e) are possible.
One example (for the beam ions) is the resonance
distribution

Ay
m[(pz — mapVi)2 + AZ]

where Ay = const. is a measure of the axial mo-
mentum spread,

Gy(pz) =

12



Equilibrium Vlasov-Maxwell Equations
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e For specified transverse distribution functions Fy(H3)
and F.(H,.), the equilibrium potentials ¢°(r) and
¥O(r) are determined self-consistently from

;Ergqbo(r) = -—-471'6[an8 (r) — nS ()]
lé_r_(z 0 r = —4me |—=np\"r _nO T
T Or 8T¢(> = |:’Y (1) )

where nd(r) and n2(r) are the ion and electron
density profiles

nd(r) = /dgpr(HJ_b)Gb(pz)

n0(r) = / EPpF.(H1.)Ge(p:)

e Maxwell's equations for ¢°(r) and 4°%(r) are gen-
erally nonlinear.

13



Equilibrium with Step-Function Density Profiles
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e A simple class of equilibrium distribution func-
tions Fy(H ) and F.(H,.), which correspond to
overlapping step-function density profiles for the
beam ions and background electrons, is given by

—

P -
Fy(Hip) = m‘S(HLb — 1)
Ne .
Fe(H_Le) — > 5(H_Le - T_Le)

where Ay, 7., 11, and T . are positive constants.

e Some straightforward algebraic manipulation shows
that the corresponding density profiles are

ny = const.,, 0<r <y
np(r) = |
0, Ty < T < Ty

and

Ne = fZpynpy = const., 0 <r <
ng(r) = -
0, Ty < T < Ty

where f = n./Zyn, is the fractional charge neu-
tralization.

14
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Equilibrium with Step-Function Density Profiles
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e Introduce the ion plasma frequency-squared de-
fined by

5 47T’FLbZ§€2 4Nnge2
0o = = 2
2

P Yoy VoMpT

where Ny = Wnbrb is the number of beam ions per
unit axial length.

e Equilibrium agalysis shows that the beam radius r
is related to T4, 1., @§b1 etc., by the equilibrium
constraint conditions

1/1 R 274
a-5(-1) -
i Yoy
1 v%my (1 B f> 2 2 2T
2 Lyme “pb "o Me

e T he coefficients of r2 in the above constraint con-
ditions will be recogmzed as the depressed beta—
tron frequencies

~2 =2
vy and v

for transverse particle motions, including self-field
effects.

15



Equilibrium with Step-Function Density Profiles
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e Examine equilibrium constraint conditions for T >
O and T, > 0.

e Can show that both the ions and electrons are
radially confined provided

f<1

which place restrictions on the allowed values of
fractional charge neutralization f, and normalized
beam intensity @gb/wgb.

16
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Thermal Equilibrium with Diffuse Density
Profiles
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e Many choices of equilibrium distributions F,(H )
and F.(H,.) are possible. As another example,
consider

g Hy
Fy,(H = ex N —
WHop) (2myympT1p) p( T_Lb)
'FLe H_Le
Fy(H, ) = exp | —
b( - )1 (27TmeT_Le) P ( T_Le>

where 7y, Te, 113, and T, are positive constants.

e T he corresponding equilibrium density profiles are

1 /1 ~
nd(r) = npexp {—-E (—Q—fybmbwger + Zye[t°(r) — ¢O]> }

ne(r)

T €XP {Te [¢°(r) — 501}

le

e The potentials ¥°(r) and ¢%(r) must be deter-
mined numerically from the corresponding Maxwell
equations, which are highly nonlinear.

17
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Linearized Viasov-Maxwell Equations
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e Express all quantities in the nonlinear Viasov-Maxwell
equations as an equilibrium value plus a perturba-

tiOﬂ, €.d., fb(vaat) — f[;o(rvp)_l_afb(xvpat)r ¢(X7t) —
$9(r) + 8(x, 1), etc.

e For small-amplitude perturbations, the linearized
Vliasov equation for the ions becomes

0 , O d
{_ L P 4 Pl
ot Ym0z  Yymp OXJ
Zye O 0
_ [%mbwgﬁi—w%) wr =2V 602, t)
r Or op L
Zpe
= p1 - Viép(x,t) Fy(H1p)Go(p2)
Vo1 0H

18



Linearized Vlasov-Maxwell Equations
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e Similarly, the linearized Vlasov equation for the
electrons is given by

0 0 0 0 0
{ + P 2 4 B +f——¢0(r>xL-——}

ot Me 0z  Me . ox, ror op1
X Ofe(x,p,t)
e
= —PL- V_L5¢(X7 t) Fe(H.Le>Ge(PZ)
me ~ 0 le

e Linearized Vlasov-Maxwell equations are valid for
small-amplitude perturbations about general choice
of equilibrium distribution functions Fy,(H,;) and

Fe(H_Le)-

18-1



Linearized Vlasov-Maxwell Equations
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e The perturbed potentials d¢(x,t) and d¢(x,t) are
determined self-consistently in terms of the per-
turbed distribution functions from the Maxwell

equations
Z
——47re< b/d3p5fb /d3p5fe>
'Yb

52 52
(ax2 T ay?) v
—47e (Zb / d3pé fi, — / d>ps fe>

9? 02
(@ T —‘> 2

e In the linearized Vlasov equations for §f,(x,p,t)
and df.(x,p,t), it is important to recognize that
the differential operator

d

corresponds to the total time derivative follow-
ing the particle motion in the total equilibrium
(applied plus self-generated) field configuration.

19



Linearized Vlasov-Maxwell Equations
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e For amplifying perturbations, we integrate the lin-
earized Vlasov equations from t' = —oo, where
the perturbations are negligible small, up to the
present time t' = t, when the particle orbits x'(t')
and p/(¢') pass through the phase-space point (x,p),
i.e.,

X({t'=t = x

p'(t' =1) p

-~
e

e This gives for the perturbed distribution functions
P
UL

0 | t
Sfo(x,p,t) = Zpe T Fb(HJ_b)Gb(pz)/ dt’

V' s (x, 1)
0 1b b

o t /
1.05,0,8) = —e —FHL)G(p:) | P 50(x 1)
aH_Le —0 Me
where use has been made of dH',/dt! = 0 =

dH', _/dt'.

20



Linearized Vlasov-Maxwell Equations
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e The ‘primed’ orbits for the beam ions solve 2/(¢') =
2+ (pa/wms) (¥ — t) and

d 1

Z () = e

dt! 1(2) %mpr( )
d Zpe 090 (r')
g () = —wmax L (1) — T ()

where r2(¢') = «?(¢')+4"2(¢'). Similarly, the ‘primed’
orbits for the background electrons solve 2/'(t') =
z 4+ (p./me) (' —t), and

d 1

&?Xl(t') = meplﬂt')
d , ., _ edd(r) ,
%PL(U = x' ()

where x/ (¢ =t) =x, and p/, (Y =t) = p..

21



Linearized Viasov-Maxwell Equations
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e The orbit integral representations for §fu(x,p,t)
and é§f.(x,p,t) must of course be substituted into
the Maxwell equations for §¢(x,t) and §¢o(x,t) to
determine the self-consistent evolution of the per-
turbations.

e It is convenient to adopt a normal-mode approach
in which perturbed quantities are expressed as

Sf(xpt) = Y, > 6f(rp k,w)

f=—0c0 k,=—00

x expli(£0 + k,z — wt)]

spet) = S Y 60 ki w)

b=—co k,=—0o0

x expli(4f + k,z — wt)]

22



Linearized Viasov-Maxwell Equations
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e Here, (z,y) = (rcosf,rsin@) is the transverse po-
sition, the integer £ is the azimuthal mode num-
ber, k, = 2nn/L is the axial wavenumber, where n
is an integer and L is the axial periodicity length,
and w is the complex oscillation frequency.

e When carrying out the t'-integration, Imw > 0 is
assumed, corresponding to instability (temporal
growth).

>

e In linac geometry, L is the fundamental periodicity
length for Fourier analysis of the perturbations
in the z-direction. In storage ring geometry, we
make the identification L = 27 R, where R is the
major radius of the storage ring (R > r3).

22-1



Linearized Viasov-Maxwell Equations

e Some straightforward algebra gives
- 0
5fp(r,p) = Zpe Fy(H1)Go(p2)
OH 1

0
X {5&6(7“) + i(w — kzvz)/ d’r&ﬁg(r')

% exp[il(6' — 0) — i(w — kzvz)f]}
for the beam ions, where v, = p,/vyms, and

0
—e
aH_Le

5j?f(7°,p) = Fe(He)Ge(p2)

- 0
X {&ge(r) + i(w — kzvz)/ drégt(r")
x expl[(0 —0) —i(w — kz’vz)’F]}

for the background electrons, where v, = p./me..

23



Linearized Vlasov-Maxwell Equations
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e Here, Imw > 0 is assumed, and 7 denotes the
displaced time variable

=1t —t

e The radial and azimuthal orbits, r'(¢') and 6'(t'),
satisfy

Pt =t)=r

~ ' =t)=90

and are related to the Cartesian orbits, z'(¢') and
v (¢), by 2’ =r'cos# and y = r'sin@’.

23-1



Linearized Viasov-Maxwell Equations
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e Finally, for self-consistency of the pertAurbed fields,
Maxwell’s equations for §¢%(r) and ¢*(r) can be
expressed as .

= —ane (L [ @oiiirw) - [ Epsfin)

Tb

= —dre (Zb/dg)p&ﬁf(rap) —/d?’p(s]?f(?‘,p))

e The four coupled equations for § ff(r,p), §fi(r, p),

50%(r) and §8(r) represent the final system of
eigenvalue equations derived for small-amplitude
perturbations about general equilibrium distribu-

tions f2(r,p) = Fj(H1;)G;(p-).

24



Linearized Vlasov-Maxwell Equations
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e The coupled eigenvalue equations have a wide
range of applicability, and can be used to de-
termine the complex oscillation frequency w and
detailed stability properties for a wide range of
system parameters and choices of transverse dis-
tribution functions Fy(H ) and F.(H .).

e The principal challenge in analyzing the coupled
eigenvalue equations is two-fold:

(a) Dependingon the equilibrium profiles, the trans-
verse orbits (+/,0") or (z',4') are often difficult
to calculate in closed analytical form.

(b) Once the orbits in the equilibrium fields are
determined, the integrals over t' are challeng-
ing because the r'-orbits occur explicitly in the
arguments of the (yet unknown) eigenfunc-
tion amplitudes §¢°(+') and &¢4(r').

25



Linearized Vlasov-Maxwell Equations
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e For future reference, the ion and electron or-
bit equations can be expressed in the convenient

forms
2

K () + i ()XL() = 0

and
2

dt12

x| () + ()X (F) =0

Here, v2(r) and v2(r) are the (depressed) beta-
tron frequencies-squared, including applied plus
self-field effects:

Zie 1 0
V1>2(7° — w§b+ : =—p(r)
YTy T or
e 10
20y = 22 ()
T Or

26



Particle Orbits for Step-Function Density
Profiles
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e For step-function density profiles, the (depressed)
betatron frequencies are given exactly in the beam
interior (0 <7 <) by

~ 1_ 1
B0y = o= 53 (- 1)
b
2y = 2= - )
2Zb e d

where 175 and 72 are constants (independent of

€

r), and @gb = 4dnipZie? [vpme.

e The ion orbits that pass through (z,vy,ps,py) at
time t! =t are (for 0 <r' < )

1

' (t) = zcos(pyr) + —p, Sin(DpT)
YTy
7 ! o~ l . —~
vy (') = wycos(iyr) + —py SiN(Tp7)
Yl

27



Particle Orbits for Step-Function Density
Profiles
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e Similarly, the electron orbits are given by
(for 0< < Tb>

1 R
2 (t") = xcos(Ver) + ——peSin(ver)
Mele
14l ~ 1 Y
y' (') = ycos(Der) + DpySln(l/e’I')
ere

e Representation of the orbits (+/,0") in cylindrical
coordinates is also readily obtained, where 2/ =
r cos@ and ¢y = r'sind’. We introduce

Pz = pLCOSP

Dy =— pLSing

where ¢ is the azimuthal phase of py. It then fol-
lows that r2(t)) = «'2(t') +42(¢') can be expressed
(for the ions, say) as

2
2552

—5=5 1 — cos(20,7)]
2pmy Vg

r'z(tl) — %TQ[]_ + cos(20,7)] +

+ TPL cos(¢ — 0) sin(20,7)

—

YoTply

28



Dispersion Relation for Step-Function
Density Profiles
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e Express [d3p--- = fooodp_Lpoo%dqﬁf_oooodpz--- in
calculations of [d3psfy and [d3péf.. Because
8Fb(H_|_b)/8H_Lb and 8Fe(H_Le)/8H_|_e are indepen—
dent of azimuthal momentum phase ¢, what is
required is the phase-averaged orbit integrals

‘ . 27 d¢ 0 R ,
Ib(T7P_LaPZ) — z(w - kz’Uz) ‘2‘; dTCW’e(T )
0 —0c0
x exp{il(0 —0) —i(w — k.v,)T}

2% d¢ 0 R
0 21 —00
x exp{il(0' —0) —i(w — k,v,)7}

e For step-function density profiles, a class of solu-
tions is permitted in which

§PN(r) = Pt
§¢(r) = ot

in the beam interior (0 < r < 7). Here, ¢, and ¢,
are constant amplitudes.

37



Dispersion Relation for Step-Function
Density Profiles

o \VWe make use of
(2" + iy ) = r'“exp(ild")
to express

Ig(r, p_!_vpz) — i(w - kzvz)@b\é eXp(_MO)

-

0 27
X /“ dTeXp{-z(w— sz)'r}/ dgb o' (t") + iy’ (£)]°

e Integrating over ¢ and 7 gives (exactly)

J4
Ly(r,pL,p2) =~ Z m,(g_m)l

(w — kzvz)

¢
. [w — kv, — (£ — 2m) )] o)

for the beam ions, where v, = p,/yymsp, and

14

1 2
IE 3 yPz) — ——; :
- kz z o~
VI k) B -]

[w— kv, — (£ —2m)D]

for the background eiectrons, where v, = p,/me.

38



Dispersion Relation for Step-Function

Density Profiles
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e Some straightforward algebra gives for the per-
turbed charge densities

47ere/d3p5ff(r,p)

A2
re(w)&ﬂg(?") 5(?’ — )
’/b
) ' "2
—47Te/d3p5]?f(r,p) = — pere(w)5¢e(’f) 5(7” —7p)

e Here, theion and electron response functions (5 =
b,e) are defined by

14

£ w) = __}_ 4 = (€ 2m)VJG (pz)
Mi(w) = 2£m=0m!(£—m)!/ (w = kyv,) — (£ —2m) ;4]

for general azimuthal mode number /.

39



Dispersion Relation for Step-Function
Density Profiles
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e The couplgd equatiorls for the eigenfunction am-
plitudes §¢*(r) and §&*(r) then become

o2 o2
[ 2 = (w)&/)‘z(?")-l- pel‘e(w)%e('f)
7b b

X i5(’/‘——7“1))
Th
and
18 8 /12
L e ) st
(r@rrar ’I“) (r)

52 52
{ —BrH(w)ed(r) + per%)é&g(r)

b

1
X —5(7“ — Tb>
Ty
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Dispersion Relation for Step-Function
Density Profiles '
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e The equations for §0¢(r) and §¢(r) can be solved
exactly in the beam interior (0 < r < ), and in
the vacuum region (ry < r < ry).

e These equations can also be integrated across
the beam surface at r = r,, thereby relating the
discontinuities in (8/0r)d¢*(r) and (8/0r)s¢*(r)
self-consistently to the perturbed surface-charge
and surface-current densities.
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Dispersion Relation for Step-Function
Density Profiles
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e We enforce continuity of §¢*(r) and §¢*(r) at the
beam surface (r =13), and set §¢*(r =r,) =0 =
st (r = ryp). Some straightforward algebra gives

2 Agb
[1 — G T iz o

2t )| = S Sy
XL—WM% “’} w2 <0

e Dispersion relation is valid for:

Step-function density profiles n(r) and n2(r).

Arbitrary normalized beam intensity (@pb/wgb)-

Arbitrary fractional charge neutralization f.
- Arbitrary azimuthal harmonic number £.

- Incorporates effects of axial momentum spread.

e System is fully stable in the absence of back-
ground electrons (f = 0).
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Ion and Electron Response Functions
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e For purpose of illustration, take G;(p.) (j = b,e)
to be the resonance function

A;
w[(p: — vym; V)2 + AF]
where A; = const. is the characteristic axial mo-

mentum spread, V; = V; for the beam ions, and
V; = V. = 0 for the background electrons.

Gj(pz) —

e The ion and electron response functions are then
given by

1 <& /1

Mylw) = T2f 2 ml(f—m)!
(£ —2m)0y

[(w — kz% + ilkz‘vaz> - (E - 2m)Db]

1 o o
Fe(w) = =53 2. it — oy,

(6~ 2m)s.
[(w + ilkzlvTez) - (ﬁ - Qm)ae]’

where vy, = Ap/vsmp and vy, = A./m, are the
axial thermal speeds.

X
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Dispersion Relation for Step-Function Density
Profiles
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e The contributions proportional ¢|k.|vr;, in the ion

and electron response functions I‘é.(w) correspond
to Landau damping effects produced by longitu-
dinal momentum spread.

e \VWhen two-stream instability occurs, the strongest
instability (largest growth rate Imw) occurs for
azimuthal mode number ¢ = 1, corresponding to
a simple (dipole) transverse displacement of the
beam ions and background electrons.
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Kinetic Dispersion Relation for Dipole Mode
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e The exact kinetic dispersion relation for £ = 1 can
be expressed as

2 Apb/%? }
_1—7“%/7“2 (w =k, Vp + tlkz|vrsp)? — D7
X 2 - Ve }
1 =r2/r2  (w+ilk|vrse)? — D2
_ . Sre O

[(w -+ Zlk l'UTze)2 - V2] [(w — k. Vi + Zlk I'Usz)2 - Vb]

o Here, we express

~D Yoy .o
ws =

pe meef pb
where &%, = 4ripZ2e? /yymy is the fon plasma frequency-
squared, and f = n./Zyny is the fractional charge
neutralization by the background electrons.

44



Kinetic Dispersion Relation for Dipole Mode
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e Kinetic dispersion relation for £ = 1 can be ex-
pressed exactly in the compact form

[(w—kVotilkz|vrs)? —wp [ (wtil ks |orsae) —wi] = wi

e Here, the coupling frequency wy¢, and the ion and
electron collective oscillation frequencies, w, and
we, are defined by

- 4 w bme
~2 2 2
2 __ ~2 P v\ _ 2 1 5 17rg
275 r2 p P g'rgv
and
1 r? 1 vm r2
2 _ ~2 ~2 b pMY o b
ws=v —W 1 ——= ] = — w 1 — f—
c=rety ( w> 2 Zym. p"< d )

e Two-stream instability is strongest in limit of small
axial momentum spreads
w

kz > VT ze

w
P Vb‘ > v,
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Dipole-Mode Two-Stream Instability for vr,; = O
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e Setting vr,; = 0, for small values of f (and there-
fore w?), the kinetic dispersion relation supports
four solutions with frequencies w—k,V, ~ £+w, and
w ™~ Fwe.

e For f # 0, one of these solutions is unstable
(Imw > 0). The unstable branch has real fre-
quency and wavenumber (w, k,) closely tuned to
(wo, k.0) defined by

-

W — We

wo — ko0Vp = —wy

e EXxpressing w = wg + dw and k, = k,o 4+ k., the
quartic dispersion relation can be approximated
by the quadratic form

Sw(bw — 6k, V) = —

where |dw| € 2w, and |[dw — Viok,| € 2w, are as-
sumed.
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Dipole-Mode Two-Stream Instability for vr,; = 0

=PPPL

FRIIEIOH P
PSS LEReRITORY

e Solving the (approximate) quadratic dispersion
relation gives

1
Rebw = —2—5]52%

Iméw = T[o[l = (8kV3/21 )22

for the unstable branch With Imdéw > 0.

e Validity of this result requires

3

4 3
W K Whe ;,  Whg

16
which is readily satisfied for 0 < f <1 and
@pb/wgb < 0.5.

o FOrry/m, — oo, the maximum growth rate (Imdw)maz =
o is given by

(Iméw)mae 1 f1/2(’)’bmb/mee)l/4(@gb/w§5)3/4
Wb 27/4 [1 4+ (f/2)a2,/wg ]t/
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Dipole-Mode Two-Stream Instability for vr,; = 0
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e For the case of step-function density profiles:

- Growth rate increases with increasing beam
intensity (@gb) and increasing fractional charge

neutralization (f).

- Growth rate decreases with increasing wall prox-
imity (larger ry/ry).

e Growth rate can be substantial for high-intensity
proton linacs-and storage rings. For example,
for a proton beam with Z, = 1, my/m. = 1836,
v = 1.85, &% /wg, = 0.1, and f = 0.1, we find

(IMméw)maz = 0.127wgy

Rew_: wo = 13.03(,055

szj, =~ k‘zo% = 14.030051,
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Dipole-Mode Two-Stream Instability for vr,; = O

E %mmm FLESIER
FHYGHS WHeRNTeRY

e For the ion beam parameters of interest for heavy
ion fusion, the transverse beam emittance is small
(small T'\p), and the beam intensity is close to the
space charge limit

~2
w
pb — 2
(w02> - 2,71)
Bb maz

for f =0 and QT_]_b/’mebI/)ng < 1.

e At such high beam intensities, a cubic or full quar-
tic approximation to the dispersion relation must
be solved. For a heavy ion beam with A = 133
and Z, = 1, kinetic energy (v, —1)myc® = 10 GeV,
ratio of beam radius to wall radius ry/r, = 0.5,
and fractional charge neutralization f = 0.1, we
obtain the maximum growth rate

(Imw)maz = 2.04wgy
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Effects of a Spread in Axial Momentum
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e Incorporating an axial momentum spread, the Ki-
netic dispersion relation for dipole-mode pertur-
bations (I = 1) is given by
[(w"kzw_l_'i'kzlv'sz)z_wg][(w_"'i!kztUTez)z—wg] — w?

where

e Numerical analysis of this dispersion relation shows
that a modest axial momentum spread can sta-
bilize the dipole-mode two-stream instability at
moderate values of beam intensity and fractional
charge neutralization.
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%PPP[ Effects of a Spread in Axial Momentum
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NPPPL Effects of a Spread in Axial Momentum
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Effects of a Spread in Transverse Betatron
Frequencies for vr,; =0
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e Assume (weak) parabolic variation in radial den-

sity profiles with

n?(r) —

0,

where e K 1.

ﬁj(l-é%) , 0<r<m

ry, <1 < Ty

e Adopt a model that makes the susceptibility re-

placements

~2
wpe

w2 — 2

~2
wpb

(w - kz%)Q _ ’713

2 /Tb d'rrwge(r)
.—)

7 Jo w?—v2(r)

drrwgb(r)

2/”’
.%___
r? Jo (w—kVp)2 —vE(r)
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Effects of a Spread in Transverse Betatron
Frequencies for vr,; = 0
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e Fore 1 and ¢ =1, dispersion relation becomes
[((w—k: V)2 —wi+ Awf][w? —wi+ Aw?] = wi(l—eae)(1—eas) ,

where Aw? and Awf are proportional to e and
related to the spreads in betatron frequencies.

e Threshold condition for the onset of instability is

f@pb/wﬁz S 2 (nybmb) 1/2 53— N _S_f 2
(1+ fa)gb/zwgb)l/? Zyme 8 8

e As a simple example, for inhomogeneity parame-
ter e = 0.075, and protons with v, = 1.85, Z; = 1
and my/m. = 1836, the threshold condition be-
comes

fopn/wpp
(1 4 faog,/2wg)

5 2
> 0.065 (1 + §f>

52



Conclusions

Using a fully Kinetic model based on the Viasov-
Maxwell equation, we have derived the dispersion
relation for the two-stream instability for a high-
intensity ion beam propagating through a popu-
lation of background electrons.

The electron-ion two-stream instability is strongest
(largest growth rate) for dipole-mode perturba-
tions with azimuthal mode number [ = 1.

In the unstable regime, the two-stream instability
growth rate is found to increase with increasing
beam intensity, and increasing fractional charge
neutralization.

Effects that reduce the growth rate of the two-
stream instability include:

- Proximity of a conducting wall.

- Axial momentum spread.

- Spread in (depressed) transverse betatron fre-
quencies.
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Future Analytical and Numerical Studies of the
Two-Stream Instability
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e Determine mode structure for collective ion beam
oscillations in the absence of electrons. Deter-
mine dependence on:

— Beam intensity
— Ion density profile shape

— Spread in (depressed) transverse betatron fre-
quency

— Choice of fnput ion distribution function f2(r, p)
e Determine properties of two-stream instability in
presence of a small population of electrons at

moderate ion beam intensity. Determine depen-
dence of instability properties on:

— Electron density profile shape
— Spread in transverse electron betatron frequency
— Ion beam intensity

— Choice of input electron distribution function

9(r,p)
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Future Analytical and Numerical Studies of the
Two-Stream Instability
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e Determine threshold properties of the e-p insta-
bility as a function of:

— Beam intensity
— Fractional charge neutralization
— Choices of input distributions f2(r,p) and f(r, p)

— Axial momentum spread

e

e Determine illustrative operating regimes for PSR
and SNS that minimize the deleterious effects
of the two-stream instability and maximize the
threshold beam intensity for onset of the two-
stream instability.
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