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Laser Wakefield Accelerator

e A short intense laser pulse propagating through a plasma excites a
plasma wave in the laser pulse’s wake (a “wakefield” plasma wave) by

the laser's ponderomotive force.

e Externally injected electrons can be accelerated to high energies by
the large amplitude electric fields in the plasma
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Recent results from the NRL SM-LWFA experiment

ePeak energy ~ 100 MeV e Wakefield Amplitude, An/n; = 1
ePeak Acceleration field = 100-500 GV/m  eLaser Power 2.5 TW
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Comparison between SM-LWFA and LWFA

SM-LWFA

Self-trapped electrons
accelerated with large energy
spread (~100%).

Plasma period short (~20 fs),
difficult to inject electrons.

Extended acceleration distance
from relativistic self-focusing
(RSF).

LWFA

eInjected electrons could be
accelerated with small energy
spread .

eLonger plasma period (~100 fs),
may inject electrons at desired
acceleration phase.

eRSF is not applicable in LWFA
due to low plasma density and
short pulse.



Photo-cathode RF gun injection

Pico-second
< T3 laser —p LWFA

RF gun Pico-second
electron pulse

eRequires RF gun.

eRequires photo-cathode in RF gun.

eRequires synchronization between RF gun and laser.
eRequires electron beam optics.

eElectron pulses not short enough for precise phasing with wakefield.



Laser Driven Electron Injectors

eLILAC (Laser Injection Laser Accelerator)
oColliding pulses?

«LIPA (Laser lonization and Ponderomotive Acceleration)?

I D. Umstadter et al., PRL, 76, 2073 (1996)
2 E. Esarey et al., PRL, 79, 2682 (1997)

3 C.I. Moore et al., PRL, 82, 1688 (1999)



Laser Injection Laser Accelerator
(LILAC)

Pump laser pulse LWEA

Injection
laser pulse

eIntense pump laser pulse excites wakefield in LWFA.

eIntense injection laser pulse perturb plasma electrons to be trapped by
wakefield of LWFA.

«Temporal and spatial alignment of pump and injection laser pulses
determines acceleration phase.



Colliding Pulse Injector

Pump laser pulse | LWFA | .

Colliding pulse 1 Colliding pulse 2
Injection
laser pulse

eIntense pump laser pulse excites wakefield in LWFA.
«Colliding pulses form low phase velocity beatwave to trap plasma electrons.

eSynchronization between pump and colliding pulse 1 determines
acceleration phase.



Laser lonization and Ponderomotive
Acceleration (LIPA) Injection

Injection
laser pulse

Pump laser pulse LWFA

eInjection source is outside LWFA and will not interfere with wakefield.

eIlnjection energy can be tailored with choice of ionization of gas and
selected with alignment angle.

eElectron pulse length much shorter than injection laser pulse length.

eRelative ease of laser alignment.



The laser ionization and ponderomotive acceleration (LIPA) of
high charge state ions produces energetic electrons from a high
intensity laser focus (E ~ 1 MeV @ 10'° W/cm?)

Laser pulse focused\ —
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Tunneling ionization and its strong field limit (Barrier Suppression lonization -
BSI) describe high intensity ionization in a 1 um field (Ygj4ysn = JE/ 2U, <<1)
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An ionized electron is ejected from a laser focus by ponderomotive
acceleration and conservation of canonical momentum

e An electron is accelerated from the laser focus by the gradient of the
ponderomotive potential (average quiver energy)
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¢ An electron ionized with non-zero initial canonical momentum
(P, = Po + €A, /c) has an average drift of:
. eA(f,t,) _ . : L
Pg = . , where I, and t, are the position and time of ionization

« In circular polarization the direction of p, does not have a fixed direction

since A rotates in the plane of polarization. When considering many
ionized electrons, there is no preferred direction for p4 resulting in
cylindrically symmetric electron distributions

e In linear polarization p is always in the direction of polarization which

causes an asymmetry in the electron distribution (peaked along A or E).




Electrons ionized from higher charge states of ions produce
higher energy electrons due to larger ponderomotive energies
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The ponderomotive force from a low intensity Gaussian laser focus is
symmetric about the beam waist and predominantly radial:

The ponderomotive force of a diffraction limited Gaussian TEM,, focus is
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Three important features of this force are

electrons

—_— 0=90° L

——————————— —+ _ — — —propagation——>




An electron interacting with high-field strengths gains momentum in the
laser propagation direction

o The low-intensity distribution of electrons ejected at 90° to the beam axis
is “pushed” forward into a cone about the laser axis as the electron
motion becomes relativistic

e This forward momentum component results from v x B or field
momentum effects'?

electrons

ser

' C.I. Moore et al., Phys. Rev. Lett. 74, 2439 (1995)

2 H.R. Reiss, J. Opt. Soc. Am. B7, 574 (1990); P.B. Corkum et al., in Atoms in
Intense Laser Fields, edited by M. Gavrila (Academic, New York, 1992), p. 109;
Y.l. Salamin and F.H.M. Faisal, Phys. Rev. A 55, 3678 (1997)



Derivation of energy-angle relation from Lorentz Force
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Experiments and numerical simulations demonstrate
the energy dependent ejection angle of LIPA
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lonized electrons are detected with DEF film bent into a
cylinder and placed around the laser focus

Laser
Film
Holder 1054 nm
1 Joule
400 fs pulse

7 micron spot size
Ipeak=3x1 01 8 W/ cm2
(in vacuum)

DEF Film
in Holder

parabola

X

Vacuum chamber
backfilled with Kr gas
to approximately 1 Torr

Electrons




Ejected electron anqular distribution from Krypton

(Circular polarization)
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Ejected electron distributions from Krypton show electron
ejection in the polarization direction (®=90" and ®=270")
with a longitudinal momentum component (focus @ z=0)
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Observation of energy dependent ejection angle on film

«The electron angular distribution measured with 1 layer of aluminum foil over the
film (E>35 keV) shows a maximum ejection cone angle of 80° (E=32+20 keV).

«The distribution measured with 3 layers of aluminum foil (E>70 keV) shows a
maximum ejection cone angle of 72° (E=115+45 keV).

«The minimum ejection cone angle on both films is 59° (E=<360+90 keV).
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e The relativistic equation of motion of each electron in the laser field is
integrated to find the ejected electrons’ trajectories,

du® e e
& = CR%AB _3BA% Iy, = _SEBy,,
=%\ g =—SEPu
A numerical simulation using Ammosov-Delone-Krainov (ADK) tunneling

theory was used to model the experiment

o Atoms are placed at random throughout the laser focus.

e A spatially and temporally Gaussian laser pulse is passed over the atoms
in the laser focus.

e The field is modeled by the paraxial approximation for a Gaussian laser
focus (including first order longitudinal field corrections).

e lonization is modeled using ADK tunneling ionization rates’

* Following ionization, the relativistic equation of motion of each electron in
the laser field is integrated to find the ejected electrons’ trajectories,
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" M.V. Ammosov et al., Sov. Phys. JETP 64, 1191 (1986)



ADK tunneling ionization theory predicts much broader azimuthal
electron distributions than observed in the experiment.

2. Experimental Data
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An ADK tunneling ionization simulation has been used to model the
electron trajectories after ionization
Atoms are placed at random throughout the laser focus.

A spatially and temporally Gaussian laser pulse is passed over the atoms
in the laser focus.

The field is modeled by the paraxial approximation for a Gaussian laser
focus (including first order longitudinal field corrections).

The fraction of atoms ionized at phase 1o in ADK theory is given by:

Mo
C(ng)=1-exp| - jw(n)dn 1 where w(n) is the ADK rate:
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C.-+ and f., are constants ~1, |, is the ionization potential, E(n) is the
electric field, n* is the ground state principal effective quantum number
(n*=Z/(2Ip)”2), and | and m are the orbital and magnetic quantum numbers

respectively.

This fraction is solved for 1, using a randomly generated C(n,) as the
probability of ionization to find the time of ionization for each individual
charge state of each ion.



A second simulation using an empirical modification to BSI ionization theory
was used to better model the experiment

e The modified BSI simulation is identical to the ADK simulation except a
different ionization model is used.

e The polarization directed electrons observed in the experiment suggest
electrons are ionized with Ilarger initial canonical momentum

(P, =P, +eA,/c =eA,/c) than predicted by ADK theory.

e To produce this large initial canonical momentum, BSI theory was modified
to simulate ionization at a wider range of phases than predicted by ADK:

Modified BSI Electric field peaked at —180°, 0°, and 180°
Bl (cos™) ADK

g o o =
BN o o o
1 I I ]

loniz. prob. and P, (normalized)
©
N
I

o
o

-180 | -90 ' 0 ' %0 | 180
Phase angie (deg)



lonization with larger P__, than predicted by ADK tunneling theory shows
electron angular distributions consistent with the experimental resuits

2_Experimental Data
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Experimental setup for electron energy spectrum measurements

1054 nm
1 Joule
400 fs pulse
5 micron spot size

lpeak=6x1018 W/cm2

f (in vacuum)
Typical electron—>/ M4 wave
trajectory ! plate Ifor
L ff-axis circular
Scintillator Shielding o . .. polarization
and PMT

vacuum chamber



LIPA electron energy spectrum in linear and circular polarization
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Number of electrons/keV

Simulated electron energy distribution for 6x10'8 W/cm?
peak intensity in Krypton (Circular polarization)
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Ejected electron energy distribution for 6x1018 W/cm?
peak intensity in Krypton (Linear polarization)
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Simulations of high intensity ionization (I .,,=2x10" W/cm?) of Argon
using 7.5 TW from upgraded T3 laser pulse
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Each ejected electron beam has the following characteristics:
* Energy = 2.8 MeV with an energy spread of 300 keV FWHM
e £~ 0.8 mm-mrad

eq=2pC

* Electron pulse length = 100 fs




Experimental setup using LIPA electrons as the
injector for a laser based accelerator.
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Electron energy spectrum of Argon using I.,,=5x10* W/cm?
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Conclusions

e Ultrashort pulse electron bunches can be produced for injection into laser driven
accelerators such as the LWFA.

eExperiments on LIPA electron injector demonstrated:

—using a linearly polarized laser pulse, two highly directional electron beams

(©2=0.05 SR) in the laser polarization direction with energies up to approximately
500 keV.

—using a circularly polarized laser pulse, production of a roughly annular
electron beam with energies up to 1 MeV.

* Numerical simulations on LIPA show:

—using the well accepted ADK tunneling ionization theory, electron distributions
inconsistent with the experimental observations.

—Using a simulation imposing larger initial canonical momentum than predicted
by ADK theory, much better agreement with the observations.

 Simulations show excellent emittance short pulse electron beams are produced
using LIPA.

» Petawatt lasers capable of achieving near diffraction limited focal quality could
produce up to 1 GeV electrons using the LIPA mechanism.



