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SCOPE

[.SS and laser accelerators will require pulsed, high peak power lasers operating at a
high repetition rate compatible with the electron accelerator (around kHz)

High vield requirements call for average power of the order of kW.

The interacting electron and laser beams need to be tightly focused. The short
Ravleigh length limits the duration of the laser pulse to a few picoseconds or less.
Same for laser accelerators.

Nanosecond laser pulses may be also useful

(' There are possibilities to transfer nano-pulses into pico-pulses.

O For LSS we can confine the electron-laser interaction within a channel. Advantages
over free space interaction: (a) avoid harmonics, (b) x-ray bandwidth is no more
limited by the number of laser wavelengths within the pulse. (¢) easy time
svinchronization.

We search for gas lasers of pico-and nano-second pulse duration with a repetition
rate in the KHz range and average power in the KW range
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OUTLINE

Review of the high repetition rate high average power gas laser
technology including: molecular, excimer, and chemical lasers

<>

0 (Gas lasers capability to short pulse and high peak power

s

0 Choice of CO), laser based on technical efficiency and ponderomotive
effect
O TW ps regime for CO, lasers, example - ATF laser

0 Examples of TW ps CO, laser application:
0 laser synchrotron source
0 laser wake field accelerator
0 Technical approaches to TW ps CO, lasers of several KW average power

and high repetition rate

Gas Laser Technology for Future Laser Synchrotron Sources



VEL - "Very Large Excimer Laser"
100 Hz, 1 kW, 10 J/pulse, 10 ns
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Gas lasers capable to high repetition rate in

nanosecond pulse regime
KrF, ArF, | Todine | HF  CO,(CO)
XeCl excimer | photo- | chemical discharge
- | discharge | chemical | |
Wavelength [Lum] O 0.2-0.3 13 34 910 (4-5)
Average Power [kW] | 1 10 1 50
Pulse Repetition Rate [kHz] 0.1-10 10 o1 | 1
Wall-Plug Efficiency [%] 2 - >100 180 30

Min. Pulse (theory) [ps] 0.15 1000 100 ‘ 0.15
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COIL - Chemical Oxygen Iodine Laser
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Fig.5. Mobile Laser Technological
Complex MLTC-50

HRR CO; laser

Laser output SO kW
Beam divergence < 0,8 mrad
Work gas consumption

atmospheric air 4,65 kg/fsec

CO; gas 0,35 kg/sec
Fuel outlay (kerosine TS-1) 45 kg/min
Continual work time during 1 run 1 + 10 min
Interval between runs < 30 min
Tracking error < 0,05 mrad
Focusing range 20+ 80 m
Mass 301t
Transport means

traction car MAZ-6422 2 piece

couple CM MAZ-93853 2 picce
Service personnel 3 persons
Power supply 2 600 kW
Cooling water consumption 250 lmin
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For processes based on electron oscillation
(plasma wake generation or Compton scattering)

CO; laser permits:

»

increase (100 times to compare with A=1 pum) in the ponderomotive
b,
potential of electron oscillatory motion €, = E’ZE f / 2m m

characteristic for: plasma wave excitation,
relativistic self-focusing,
gas ionization,
Compton scattering.

increase (10 times to compare with A=1 um) in the dimensionless

laser strength parameter ad = eE I / Mc o

characteristic for: laser wakefield and beatwave accelerators,
harmonic generation.

Terawatt COZ la;c';
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Short wavelength permits tighter focusing...

FA
LS E, LAf
E; _
thus. E—Consr

] @ identical conditions (P, F', R)

2 3
Note, that the high-field volume Vo< <ol ©< A

That may define the integral number of observed events

CHOOSING OPTIMUM LASER DRIVER FOR STANDARD LWFA



Semiconductor Optical Switching of CO, Laser Pulses

N YAG refectea G ¢ Upon absorption of

l photons above the band
gap energy, the

semiconductor switches

from transparent for

A=10 um window to

metal-like mirror.
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Bandwidth Limiied Amplification of Picosecond CO; Laser Pulses

Gain Spectrum
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Amplifier Discharge Cell

Discharge Voltage

Stored Electric Energy
Discharge peak Current
Current Pulse FWHM

Pulse Front

X-ray Pulse length

X-ray - Main Discharge Delay
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5k]
90 kA
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Accelerator Test Facility

Floor plan of the BNL ATF

shows experimental hall and CO; laser rooms
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Laser Synchrotron Source
with TWps-CO; Driver
Lol A

Concept of LSS permits:

¢ casy access to x-ray and gamma regions with
compact linac

¢ femtosecond x-ray pulses due to available

technique of ultra-short electron bunches from
photocathode guns

Choosing CO, laser instead of 1-pum laser

requires 3 times in y increase, then:
¢ Divergence  O~1/y

drops 3 times
oFlux P, o« LE, Oy’ /1,1,

increases 10 times
¢ Brightness B oc};/(zmg)z increases 100 times

- Brookhaven Mational Laboratory
- Accelerator Test Facility ll



Electron=>Gamma Converters for Future Linear Colliders

CO, laser for e =y converter at 2.5 TeV
¢ hw, = [.T/(I - ])]E[, . where x =4E hw/m’c*
For E;=2.5 TeV and 2=10 um, x=4.8 and 1, ~E,

) ¢ Rescattering yv+A=¢+e” when fura;,}mzc4f heor Alpm]<4.2E.[TeV].
° For the E.=2.5 TeV, A=10.5 um is the optimur: choice.

o B
-

. ¢ For ;=1 ps, probability of the e*=>v conversion y =o, E, /f 7;¢°
i reaches unity at the laser pulse energy E =1 1.
. A ¢ Fast-flow TWps-CO, laser operating at 100 Hz repetition rate will amplify
R S trains of a hundred 1 ps pulses spaced by 1 ns (aggregated pulse repetition
% , ecionetmng rate 10 kHz) at wall-plug efficiency 10%, .
' . i Polarized positron source for Japan Linear Collider
i i -
At y
NEEALY
< PR A
g £ re'
of
) Q
' CO; laser produces 10 times more photons per joule Q-US
L than solid state laser \l'\ \)\

: Brookhaven National Laboratory
Accelerator Test Facility - I II !
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Pulse-Train Picosecond CO, Laser
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Prospective Compton Scattering Experiment in

Plasma Channel
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Approach to monochromatic LWFA

Linear regime of plasma wakefield generation (a<1)
Channeling of the laser beam

Longitudinal and transverse sizes of the injected electron
bunch have to be small to compare with A,

Maximum bunch charge NV én W oc /lp

The maximum amplitude of the accelerating plasma

2
A
wakefield EM*[GV / m] = 28 104[7) PLITW]/ | om]
L

Combination of terawatt picosecond CQO, laser with
subpicosecond photocathode electron gun - opens the way
to practical monochronatic laser accelerators
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Principle diagram of the two-stage monochromatic LWFA
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Bunch compression in channel 'guided LWFA

0.0 .
0.00 0.01 0.02

plasma parameters:

bunch paramaters:

wakefield amplitude:

A,=800 um,  k,R.,=14.3

Epn=5MeV, AE/E15%, £=0.6 mm.mrad,

Lyo = 30 um (100 fs),
O = 0.04 or 0.19

rio, =25 or 50 ym




Brookhaven National Laborato

Accelerator Test Facility

ry
g Ill i

Multi-stage monochromatic LWFA with prebuncher

0 2 6 8

N

stages

4 0

12

CO; laser (per each stage): P;=50 T“;,

plasma parameters:

bunch paramaters (before bunching stage):

;=800 pm,

T7.=1 ps,

a’=0.5

k’R.:ﬁ=l4-3

To=100 fs; rpp=50 um, €=0.6 mm.mrad
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Feasible high repetition rate regimes for
picosecond CO, lasers

0 X-ray preionized high-pressure gas discharge controlled by
semiconductor switches

¢ Chemical pumping via energy transfer from DF to CO,

¢ Optical pumping or energy transfer from nanosecond CO, pulses
to picosecond laser pulses
0 9 um CO; laser pumping of 10 um CO, transitions
¢ CO; laser pumping of other molecular gases (NH5;)
¢ Energy exchange between counter-propagating CO, laser
pulses in plasma (G. Shvets)



Short Pulse Amplification by Raman Scattering

e Three-wave interaction

Pump a;. Signal ay.  Plasma Wave [ =¢l./mcw,

e Resonant excitation of Plasma Wave

Laser detuning Aw = —w,,
¢ Plasma Wave linear = no wavebreaking

e Total Pump Depletion

pump beam

——*»—-.

seed pulse

amplified pulse

depleted pump



Further Compression of a Sliced Pulse by RBS

e 'I'wo-color amplifier which produces short pulse wy
and pump pulse wy — Aw

e Short-pulse duration 75 > (1/Aw)
Long-pulse duration 7, = 21, /¢

e Plasma of resonant density n = mAw?/4mre?

What can be done at ATF
BEFORE

10 ps 200 ps, 1]
Plasma AFTER
inhomogeneity:
1 percent

400 fs

Compression via superradiant amplification impossible:

1
7o > —. Note: In Raman regime seed pulse rapidly

contracts o< 271,
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Gas discharge pulsed power circuit with
solid state switches

A—oh ]’—Q‘“‘?

Fig. 1. Schematic of the transvene discharge laser. D: semiconductor
diodes; Py, Py: RU-68 spark gaps: Co, C: copacitance of the main and
driving circuits, respectively; ot preionization capacitor; Ca: capacitor
starting Po: Lo.Ly; the circuit inductors, Fy~Jls: voltage divider, resisiive
shunts, and charging resistors, respectively,

Semiconductor switches transmit current up to 8 kA and withstand
the voltage up to 120 kV. They operate at 1 kHz and higher with
switching time ~ 10 ns, can be placed in series and in parallel. Thus,
for 500 kV and 100 kA we need about 60 switches.

Among other problems to solve:
high-speed gas circulation at 10 atm
high-speed vacuum pumping of x-ray tube



NH_, Amplifier

Dual Cavity
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Predicted: 60 dB gain at 3 J/cm 2, 10 ns pump CO2 pulse*
J.D. White and J. Reid, IEEE J. Quant. Electron., vol.29, 201 (1993
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Towards Femtosecond CO- Laser Pulses

Gain bandwidth broadening

Pressurized miuxture of CO-

molecules composed of

:.‘,5”: Il,f ‘.II A
5[ I." 'f ||' \ i.ﬂlllli}}'}L‘S ctoet et oM,
| ;-J"II I"-.,f'i || \'5 fl 0" has a gain bandwidth
e ‘&Y. '\,." \/ L’H 7 THz suthicient to ampht
b 100 fs laser pulses (e.g.,
\} . I'K_ V. Gordienko, et al, 1991
B R ST T

Pulse chirping in 1onized gas

A J/’ o A ”L' Hﬂ_ .
. . : 21
lontzation A, « A7
! foa2 ~ 4
n, A" hence, AV w A
That is why selt=chirping in
uas 15 practical only with
O laser.
' According to P. Corkum
pulse shortening from ~1 ps
to -~ 150 fs 15 possible

High energy 10-100 J capability of CO; laser
permits ~PW from a relatively compact amplifier.



