


 

2  The Problem Statement

 

HEP experiments and accelerators are normally developed by various teams with specific task assignments. Usually,
the different parts of a HEP experiment are developed by different institutes in their laboratories and gathered
together later after being tested. The experiments are tuned up at CERN before new tests, or calibration and operation.
For instance, the gas system and the high voltage system of a muon detector may be produced and tested by two dif-
ferent teams for ultimate integration in an experiment in the accelerator tunnel.

In HEP, control systems are, by definition, required to maintain equipment in a constant state over the lifetime of the
accelerator or experimental data-taking period. Invariably this has led to problems when existing systems need to be
upgraded or when new control systems are being specified. Consider these two cases: in the former case, when an
existing system is being amended, constraints of time, manpower and cost usually leads to a partial re-engineering of
the existing system rather than a complete rewrite of the control system. During the partial re-engineering of the het-
erogeneous control system, two options are normally considered: either the incorporation of industrial solutions
(which can be difficult to adapt) or the investment of considerable in-house manpower to provide equivalent function-
ality. Other issues that arise with partial re-engineering include hardware and software incompatibilities, lack of com-
mitment to reuse software between control systems and the fact that re-engineering often introduces short- and long-
term instabilities with the consequent need for increased human interventions. In the second case when a new control
system is being specified ‘from scratch’, the costs of implementation can be high and with new technology mainte-
nance can be an issue. In this case control systems designers often re-use parts of existing control systems either
developed at the laboratory or from industry. To re-use subsets of existing control systems can be a risky strategy
since the hardware available for control systems continues to evolve rapidly while integrating industrial control solu-
tions with ‘home grown’ solutions is often technically infeasible or difficult.

Most of the difficulties identified in amending existing control systems or redeveloping complete control systems
from scratch are problems of software engineering. In both cases the software engineering problems are those of tak-
ing a bottom-up approach to solving distributed computing issues in heterogeneous environments. Since HEP labora-
tories are not leaders in computing, designers must make use of industrial solutions and deal with the attendant
problems of their integration. Essentially what is required is reusable, distributed and collaborative control systems
solutions which enable both partial re-engineering of existing systems and facilitate the construction of new control
systems from scratch. These solutions must also minimise maintenance costs and provide highly reliable and deter-
ministic control systems. 

Existing control systems software technology has been based on the client-server model of computing using propri-
etary protocols such as TCP/IP and/or Remote Procedure Calls (RPCs) for communication across the distributed net-
work of control devices. This infrastructure requires peer-to-peer agreement between the collaborating controls
partners and cannot provide for dynamic invocation of services. Such systems also suffer from issues of scalability:
when the number of clients rises, the load on the server also rises so that system throughout of messages and service
calls falls. In addition, using TCP/IP and/or RPCs it is not possible to easily move the server process from one plat-
form to another since the clients must be reconfigured to be made aware of the servers location. Consequently, the
user-supplied controls software must be technology independent and free from the confines of the client-server model
of distributed computing. The user software must be data-driven and designed to be reused in a control system infra-
structure which has been put together using a top-down approach. The user must be able to plug a new controls ser-
vice into a controls infrastructure with no disruption to the operation of the existing controls systems and with no or
minimal recoding. 

The challenge is how to build such heterogeneous, distributed and collaborative control systems re-using as much as
possible of the existing controls software. One solution which has been proposed in the physics controls community
[4] is that of a so-called ‘software bus’. In an analogy with hardware, a software bus structure is where different mod-
ules plugged into the same bus may cooperate if their bus interfaces adhere to a given standard. A software bus must
hide the underlying technology from control systems designers - they have no interest in distributed systems technol-
ogy nor should they have. It must also scale with the technology used so as to preserve designers’ investment and
must provide more facilities than simple address and data exchange. In software terms this would translate into agree-
ing on a common software layer with an unique Application Programming Interface which permits the implementa-
tion of shareable software as separate and independent modules. One basis on which to build a software bus is the
recent Common Object Request Broker Architecture (CORBA) specification [5] for the implementation of object
communication in distributed systems. Such a standard facility supplemented by standard control software, if jointly
adopted by laboratories using control systems for physics, could make future controls software more ‘shareable’ and
reusable. The joint adoption of a software bus would be complementary to, not competing with, collaborations like
EPICS [6] and products like Vsystem. Examples of applications which could benefit from the use of a software bus in
the controls environment include: User Interfaces (development & management system), console manager, on-line
help facilities, database access control, realtime data management, data logging, archiver/retriever, alarm handling
system, equipment access, system configuration mechanisms.

The following section describes the CORBA specification and illustrates how it can be used as the basis of a software
bus. In addition, this section notes where further functionality is required on top of CORBA to satisfy the needs of
control systems designers. 



 

3  The OMG Standards

 

The Object Management Group (OMG) is an industry consortium dedicated to the goal of developing an object-ori-
ented architecture for the integration of distributed applications. The OMG emphasises as its objectives the interoper-
ability, reusability and portability of components and its operating procedures attempt to insure that any specifications
adopted as standards have their basis in commercially available software. (OMG, however, only deals with interface
standards, not the software itself). The OMG has published several documents including:

• Object Management Architecture (OMA) Guide [7]

• Common Object Request Broker Architecture (CORBA) [5]

• Common Object Services Specification (COSS), Volume 1 [8].

 

3.1  OMG Object Management Architecture

 

The OMG’s Object Management Architecture (OMA) defines a Reference Model which identifies and characterises
the components, interfaces and protocols that compose a distributed object architecture. The four main elements of
the OMA are:

• The Object Request Broker (ORB) which enables objects to make and receive requests and responses in a distrib-
uted environment. The ORB and related facilities are defined by the CORBA specification [5].

• Object Services - a collection of services (interfaces and objects) that provide basic functions for using and
implementing objects.

• Common Facilities [9] - a collection of services that provide general purpose capabilities useful in many applica-
tions. Control examples of Common Facilities include Arcghiver/Retrievers and Loggers (see figure 1).

• Application Objects - objects specific to particular end-user applications.

The Object Request Broker in the OMA is viewed as a ‘messaging backplane’ spanning multiple systems. From the
software point of view, the ORB may consist of a single software component, or multiple cooperating (and possibly
heterogeneous) software components. The Object Services, Common Facilities and Application Objects in the OMA
correspond to different categories of object implementations. In the OMA Reference Model, the purpose of categoris-
ing objects into Object Services, Common Facilities and Application Objects is to guide OMG’s strategy for develop-
ing interface specifications. Object Services include lower-level (and thus the most crucial) object interfaces; and
Application Objects reflect the need for independently-developed application interfaces for which the OMG will
never develop specifications.

In the OMA, an object is an identifiable, encapsulated entity that provides one or more services that can be requested
by a client (which can be another object, or a non object-oriented application). An operation is an identifiable entity
that denotes a service that can be requested. The Object Request Broker (ORB) component of the OMA supports cli-
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Figure 1: The OMG/CORBA Model for CICERO.

Application objects: Cortex Infrastructure objects.
Common facilities: OODBMS, Real-Time controls, Logger



 

ents making requests to objects. A request causes a service to be performed on behalf of a client and any results of
executing the request to be returned to the client. The ORB is responsible for finding the object implementation corre-
sponding to the target object specified in the request, invoking that implementation, passing it the request for handling
and returning the results.

 

3.2  OMG CORBA

 

The CORBA specification defines a number of different interfaces (see figure 1). The CORBA specification defines
an Interface Definition Language (IDL) for defining the interfaces of objects in [5].

The CORBA IDL plays a role similar to that of the IDL in a Remote Procedure Call (RPC) facility. IDL specifications
can be compiled to produce client stubs and implementation skeletons (essentially server stubs). The use of a com-
piled client stub to access an object interface is referred to as the static interface. A Dynamic Invocation Interface
(DII) is also provided that allows clients to construct requests at run-time to objects whose types might not have been
known at compile-time.

Objects are made known to the ORB by being registered with an object adaptor. The definition of a Basic Object
Adaptor (BOA) is contained in CORBA. The BOA is generally designed to handle objects that are independently
constructed, and must be handled individually by the adaptor. The CORBA specification also identifies other types of
adaptors that might be more appropriate for objects implemented in different ways. For example, CORBA identifies a
DBMS object adaptor that would be more appropriate for objects defined within a database environment.

 

3.3  OMG Object Services

 

An Object Service defines interfaces and sequencing semantics that are commonly used to build well-formed applica-
tions in a distributed object environment. Each Object Service provides its service to a set of users. These users are
typically Application Objects or Common Facility objects that, in turn, provide support for specific application
domains like network management or complex systems controls. In non-object software systems, a system’s Applica-
tion Programming Interface (API) often is defined by a single interface. The OMG Object Services API is modular;
particular objects may use a few or many Object Services. By being object-oriented, the OMG Object Services API is
extensible, customisable and subsettable; applications only need to use services they require.

The operations provided by Object Services are made through the CORBA IDL or through proposed extensions to
IDL compatible with the OMG Object Model. However, while OMG requires an IDL interface for each object ser-
vice, implementations of object services need not themselves be object-oriented. Such implementations may continue
to support non object-oriented interfaces for compatibility with an existing product’s API or with non-OMG stan-
dards, in addition to an IDL interface. Also, objects need not use the implementation of basic operations provided by
Object Services, nor must objects provide all basic operations. 

Various Object Services have been produced at various times by OMG. Examples include Event Notification, Lifecy-
cle and Naming Services which are specified in [7]. A Persistence Service specification has been approved and will
appear in a forthcoming update of [7]. 

 

3.4  Implications of Using CORBA in Controls Environments

 

Any software bus to be used in the controls environment that is based on CORBA can thus provide standard informa-
tion exchange between controls devices as well as hardware independent services. Controls systems users can use this
integrating infrastructure to provide services across the control system and potentially between control systems. Since
the infrastructure is based on CORBA, it will be both scalable and reconfigurable and therefore a control system could
be optimised to handle on-line loads.

CORBA provides ‘plug-and-play’ at the object level and the possibility of moving controls objects around the control
system without stopping the client applications. Further it facilitates network independence and can run TCP/IP or
RPCs on networks such as Ethernet, ATM or SCI. Adherence to OMG standards such as the Common Object Ser-
vices, (COSS), provides facilities such as naming and authentication as well as object adaptors such as that available
for OODBMS access.

CORBA then provides much of the functionality required as a basis for a software bus in physics controls systems.
What it fails to make provision for is message multicasting, service invocation/handling support, fault tolerance and
object management aspects specific to the domain of control systems. Additional software is therefore required along-
side CORBA to complete the software bus and thereby to provide the functionality demanded by control systems
users. The CICERO project has created Cortex [2] to provide this controls-specific software and its design concepts
are explored in the following sections.

 

4  Cortex Design Concepts

 

The Cortex element of the CICERO project provides the software bus  [2] which runs on top of CORBA . It  enables
the building of distributed control systems where responsibilities are distributed amongst control elements that have
to collaborate together. Cortex supplies extra features on top of CORBA: muticasting of messages and service han-
dling in addition to a series of control services (archiver/retriever, logger, state machine, distributed user interface)
which could be standardised in the framework of OMG.



 

In addition to the functionality already identified, Cortex promotes the modularity of distributed control systems in
order to allow some integrated control systems to be operational while some others are not. Cortex will also support
users during the reengineering phases of the integrated control systems by allowing them to reuse and integrate exist-
ing software. 

Cortex supports the entire collaborative distributed control system life cycle by:

• providing a multi user development environment,

• supporting the testing and simulation of users’ control elements with respect to the integration within the Cortex
control system,

• offering tools to operate and protect the control system from faulty processes implementing some control elements,

• allowing the integration of already existing control systems,

• allowing collaboration with other autonomous control systems.

Cortex is intended to provide a control system designer with the ability to integrate his particular control system effi-
ciently and with minimal cost and effort.

The architecture of any distributed control system will change during the lifetime of the accelerator or the experiment
it is operating. The control system integrating platform, Cortex, must therefore support a mechanism to allow a new
version of the distributed control system to be in preparation while an older one is operated on-line. It shall also sup-
port the backup and the restore of a given version of the collaborative distributed control system. Furthermore, tests
and validation (and possibly simulations) of a new configuration will be needed before it is applied to the operating
on-line system. 

These constraints have led to a so-called dual-face approach (see figure 2.) being taken in Cortex:

• an off-line Cortex representation is required to handle the logical descriptions of the architecture of the distributed
control system and to describe the various information and commands to be exchanged between the different control
elements. This so-called 

 

Repository

 

 also holds the description of the hardware model from which the on-line distrib-
uted control system is constructed, and 

• an on-line Cortex representation is also required through which the control elements can exchange information and
commands in a pseudo- 'plug-and-play' fashion. Control elements operating within the Cortex Infrastructure can
access the Cortex Repository through this so-called

 

 Infrastructure.

 

 A generation mechanism is provided to facilitate
updates of the on-line Infrastructure according to the Repository contents.

The responsibility of Cortex is twofold: on the one hand it has to support the description of the architecture of the dis-
tributed control system and the definition of the information and commands to be exchanged between the control ele-
ments. The off-line representation of the control system therefore addresses the issues of the

 

 management of control
system complexity

 

 and that of 

 

concurrent and collaborative software engineering

 

 identified earlier. On the other
hand, Cortex must transport and distribute these data and commands to the appropriate control elements when part or
all of the distributed control system is in operation. This distribution must be independent of the number of hardware
elements on which the various control elements are operating. The integrating framework must be flexible enough to
support the addition or removal of control elements, without deteriorating the operation of the rest of the distributed
control system. The on-line Cortex Infrastructure thereby addresses the demands of 

 

stability, flexibility and avail-
ability

 

 of control system elements and that of providing 

 

balanced and distributed processing

 

 for the control system.
Cortex is not a product in the sense of FactoryLink but rather a resolution of a set of issues specific to the controls
world which may point the way ultimately towards the establishment of a real controls standard.
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Figure 2: The Dual-Face approach



 

5  Cortex off-line

 

Off-line a Cortex control system is visualised as a collection of collaborating components. These components map
onto those on-line processes in a control system which produce or consume information and they can be of various
kinds. They may or may not be “control components”. For example gas systems or high voltage systems are managed
by software that are control components. Each has a read-out system and has responsibility for the hardware. Indeed
some control components may need real time capabilities, for instance, elements interfacing front-ends which per-
form interlocks. On the other hand, an on-line documentation element or a user interface element are “non-control
elements” - they do not have responsibility for the hardware. They may, however, support high level control function-
alities such as alarm filtering, user assistance, preventative maintenance etc. Cortex can therefore be used to integrate
software which implements facilities common to any kind of control element such as loggers, archivers, retrievers,
GUIs, final state machines, etc.

 

Compositeness

 

 is the mechanism proposed in Cortex to support the logical encapsulation of a distributed control sys-
tem. Components may be composed of smaller components. Such components are referred to as composite compo-
nents and are often used to separate functions or to provide the granularity required by the underlying hardware
(figure 3). Users must be able to operate the complete control system from a global standpoint or operate each compo-
nent independently via the composite components. Additionally, users must be able to specify communication
requirements at any level of component, regardless of the inherent hierarchical organisation. 

 

Grouping

 

 is a complementary mechanism to Compositeness proposed in Cortex to allow specification of information
and command exchange at any level of granularity. A collaboration group is composed of a set of components that
make available certain information and services to the other components in the group. Two components will be able to
exchange information and commands if and only if they belong to the same collaboration group. Components can be
part of more than one group. Collaboration groups can be established across encapsulations of sub-systems. The com-
bination of compositeness and collaboration groups allows the user to refine and optimise the communication at an
appropriate level of control system component.

Within a collaboration group, a component can provide information to other components by publishing items (data or
services). If granted permission by the publisher, any component of a collaboration group (other than the publisher)
can access this information by subscribing to the published items. The set of published and subscribed items handled
by a component within a collaboration group is called a component interface. A component usually has a different
interface for each collaboration group in which it is a member.
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Compositeness and collaboration grouping are the mechanisms for supporting information abstraction in Cortex:
some of the collaboration groups can be organised to enforce encapsulation of sub-systems (so-called 

 

strict encapsu-
lation

 

). This will allow composite components to subscribe within their encapsulation and publish refined information
to other composite components in other collaboration groups. 

 

6  Cortex on-line 

 

The Cortex on-line Infrastructure is a set of entities responsible for the distribution of information and for the trans-
mission of service invocations to the appropriate components, according to the model in the Cortex Repository.

The Cortex Infrastructure provides two selectable ways of data exchange between components. The 

 

push mechanism

 

which allows components to push new information into the Infrastructure or to receive information from the Infra-
structure and the 

 

pull consumer mechanism

 

 which allows components to retrieve information from the Infrastructure
at their convenience. The push mechanism is recommended for security information such as alarms. The pull mecha-
nism is more suitable for monitoring components offering refreshed information upon user request. In both cases,
only information specified in the Cortex Repository will be transported and delivered to the appropriate components.
Version inconsistency between the information sender and the information receiver are handled by the Infrastructure
at message level. For example, a component may pull from the Infrastructure items which are no longer published
(because of modification, replacement or deleteion). The dynamic information contained in these items is no longer
refreshed and the corresponding component will be informed. Time stamps will contain the last time these items have
ben refreshed.

The on-line architecture supports a separated set of messages to handle service invocation called command messages.
Commands are persistent in the Infrastructure from the moment they have been issued until they are completed (suc-
cessfully or not) or refused by performers. Two basic types of services are available. Firstly, services can be cancella-
ble or non-cancellable: a requesting component can cancel its request while the component offering the service is
processing the command. Secondly, services can be multi- or single-requestable: more than one requesting compo-
nents can issue a command to the same performer component.

More than one requesting component can invoke the same single-requestable command hence addressing the same
performing component. The on-line architecture handles possible access conflicts using an internal protocol based on
locking. Commands are not direct implementations of operations in the OMG Object Model, which do not support
some specific control functionalities such as authentication, availability and progress report features.

 

7  Mapping OMG Standards onto the Cortex Design Concepts

 

In Cortex, an ODBMS is being used as the vehicle for the off-line Repository to support a standardised access for the
CORBA objects in the on-line Infrastructure. The Repository has been designed to support the notions of Composite-
ness and Collaboration Groups, Publishing and Subscription and Components as described in section 5. ODBMSs
provide persistence of object information, and all the advantages of DBMS systems such as version management,
concurrency control, security and recovery. This enables control system designers to save a full description of the
experiment or accelerator setup in an object base and to modify that description over time as the equipment grows.

The Cortex on-line Infrastructure is instantiated as a set of CORBA objects responsible for the distribution of infor-
mation and for the transmission of commands to the appropriate components, according to the description resident in
the Cortex Repository. On-line objects in Cortex are written in C++ and use Iona Technologies implementation of
CORBA, called Orbix, for object location, access and communication services. The physical location of the compo-
nents and the Infrastructure will depend on the hardware setup available. This setup may evolve with time for perfor-
mance reasons or for maintenance purposes. In these cases, the system functionalities must be maintained when part
of the hardware is changing. This operation should take place without disturbing the operation of the parts of the dis-
tributed control system which are not involved in this upgrade. The location transparency is fully supported by
CORBA. CORBA makes no provisions for message sender identification. Any program can potentially send a mes-
sage to a CORBA object. To avoid unpredictable overloads, Cortex provides an authentication mechanism to ensure
that any new starting process is effectively representing a component known to the Cortex Repository. 

As an example of the use of Cortex + CORBA, consider the case cited by Clausen [4] at the last ICALEPCS confer-
ence where a data logging system is required which allows data to be stored in a circular buffer, later in a database and
finally on tape. From the operators console, data needs to be retrieved from all three sources (buffer, database & tape).
Individual solutions exist for each form of data storage (EPICS, ORACLE, TapeManagers). The problem is providing
a facility that irons out the differences between accessing these three different technologies and allows the operator to
access the data regardless of the underlying technology. The software bus of Cortex + CORBA can provide the solu-
tion. Adherence to the CORBA standard enables independently defined (client and server) applications to be speci-
fied. All interaction between these services is then handled by the Common Object Request Broker. Furthermore the
Cortex layer of software then deals with all issues directly related to inter-connecting controls applications and their
inter-operation.

As an example of the use of the OMA standard in Cortex the next section shows how Cortex provides reusability both
of control system components and complete control sub-systems.
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