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Challenges for ILC DR design



 

Can electron cloud effects be predicted sufficiently well to avoid 
known instabilities?



 

Are there new effects not yet observed, e.g., in a wiggler-dominated 
ring?



 

Are well-conditioned surfaces (max 

 

1) sufficient to control the 
electron cloud? How important is (0) and how does it vary? 
(Contributed by rediffused and/or elastically scattered electrons.)



 

How accurately does photoelectron generation need to be 
modeled?



 

Recent results suggest that the local electron cloud can be strongly 
affected by neighboring elements
– Trapped-electron ejection mechanism observed in quadrupoles 

at PSR; does this occur in the DR? Are there other examples?
– Creates need to model multiple elements rather than one at a 

time
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Secondary electron emission



 

Universal 

 

curve [1], peak values 
surface dependent

– max ~1-3 metals, >10 non-metals
– Emax 250-400 eV
– E1 ~20-50 eV
– E2 ~1 keV but much higher at 

grazing incidence



 

EC lifetime depends strongly on 0 ~0.5 
(CERN, PSR)



 

APS Al chamber secondary emission 
measured (R. Rosenberg) and fit to 
universal curve: max 2.8, Emax 330 eV, 
s=1.86 (L. Loiacono) [2]. Dependence 
below 50 eV must be estimated, e.g., by 
scaling to the CERN data.
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[1] M. Furman, M. Pivi, PRST-AB 5, 124404 (2002).

[2] K. Harkay, R. Rosenberg, L. Loiacono, Proc 2003 PAC, 3183 (2003).



Incident electron energy (eV)
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

 

Recent results show that well-conditioned 
surfaces tend toward max ~1, possibly due 
to graphite and carbide formation

SEY of TiN/Al under different conditions 
[F. Le Pimpec et al., Proc. ECLOUD07, 
KEK Proc. 2007-10, 68 (2007) 
http://chep.knu.ac.kr/ecloud07].

SEY of TiN, Cu, NEG after exposure in the 
KEKB LER (measured in situ). Before 
exposure, max ~1.8 for all. [S. Kato, M. 
Nishiwaka, Proc. ECLOUD07, KEK Proc. 2007- 
10, 72 (2007) http://chep.knu.ac.kr/ecloud07].

Secondary electron yield coefficient

K. Harkay            Comments on CesrTA Exp             LCWS08 and ILC08, Nov 17 2008



6



 

Emission has 3 components [1]
– True SE peaks at 1-3 eV, surface 

independent

– Rediffused varies/sensitive to 
surface (Cu vs. SS)

– Elastic depends on primary energy

APS RFA distribution fitted to a Lorenztian func: <E> 2.5eV, 
width 5 eV (10 bunches, 128 λrf bunch spacing, 2 mA/bunch) 
[For more info., see: K. Harkay et al., Proc. 2003 PAC, 3183].

Measured

Approx. 
reconstruction, 
posinst8

True secondary and rediffused components [1] using 
APS parameters (pn =2, εn =1)                                              

nn Ep
ts eEf  1

[1] M. Furman, M. Pivi, PRST-AB 5, 124404 (2002)Secondary electron distribution
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Sensitivity of secondary parameters on multipacting 
resonance

RFA vs. POSINST: 
• Peak at 20 ns bunch spac. (7 λ) sensitive to

true secondary electron spectrum 
• Amplitude (max current) sensitive to δmax

• Peak width sensitive to rediffused component
• Unfortunately, electron beam poorly modeled 

with the same parameters

Comparison of APS RFA with simulated normalized electron 
wall current as a function of bunch spacing (10 bunches). 

Positron beam:
20 mA
simul, red line 
Rediffused SS-like

simul, red line 
Rediffused Cu-like

nn Ep
ts eEf  1

10 mA
SS_like
δmax 3.1
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Photoemission


 

Even when 

 

important, EC buildup 
can be sensitive to the photoelectrons



 

Measured photon reflectivity and PE 
yield for 10-1000 eV photons on Al 
alloy (at Elletra)



 

Applied to DANE photon spectrum 


 

Total eff. photoelectron yield: 0.2

N. Mahne et al., 
EuroTev-Report- 
2005-013. http:// 
www.eurotev.org
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Photoemission vs. vacuum chamber geometry

Photon spectra, incident angle varies widely with local geometry
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Figure credit: B. Feuerbacher 
and B. Fitton in “Electron 
Spectroscopy for Surface 
Analysis,” p. 155 (Springer- 
Verlag, Berlin, 1977). With kind 
permission of Springer 
Science+Business Media. 

Schematic 
photoemission 
spectra vs photon 
energy
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See also: R. Cimino et al., “VUV 
photoemission studies of 
candidate LHC vacuum chamber 
materials,” PRST-AB 2, 063201 
(1999).
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Dramatic z-dependence 
in drifts (APS, Al max 2.2)

a) For long bunch train at multipacting 
bunch spacing, amplification strongly 
suppressed at det 1,2. 

b) At multipacting bunch spacing, short 
bunch train (center), det 6-9 strongly 
amplified; det 1,2 increase but only a 
factor of 2.

c) Det 1,2 dominate for large bunch 
spacing, consistent with 
photoelectrons (bottom) (all 2 
mA/bunch)

No ante- 
chamber 
here

~ 1 m 
upstream

K. Harkay
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Opportunities at CesrTA



 

Suite of dedicated diagnostics and study time


 

Correlate local cloud properties (RFAs) with global beam 
phenomena (bunch tune, bunch emittance)



 

Quantify mitigation techniques (low-

 

coatings, grooves)


 

Existence of both positron and electron beam in same chamber 
provides more data to determine surface emission parameters
– Parameters must be consistent in drifts, bends, particle species
– Separate secondary-dominated from photoelectron-dominated 

conditions


 

Traditionally more attention paid to positron data 
– Electron cloud effects clearly more important in this case 
– However, electron beams also exhibit weak multipacting, 

vacuum effects (e.g., APS); poorly modeled so far
– Photoelectron component may be more important for electrons
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Thoughts on CesrTA experiments (1)

Study both positron and electron beams


 

Track down horizontal tune shift vs. lattice; vary current 
(below/above multipacting threshold)



 

Define canonical set of data that is repeated over time


 

Decide later what is minimum set of overlap of interest


 

Use electron beam data to help determine photoemission 
parameters

Instrumentation


 

Investigate low-energy enhancement in wiggler RFAs (~20 eV) 
(else zero-bias suppression (?))
– Vary collector bias
– Identify threshold dependence (bunch current? spacing?)

K. Harkay            Comments on CesrTA Exp             LCWS08 and ILC08, Nov 17 2008



14

Thoughts on experiments (2)

Surface conditioning: (E)(t)


 

Record RFAs also during CHESS operation to quantify wall 
bombardment rate (C/cm2 per A-h) over time



 

EC mitigation: compare data for different chamber preparation 
over time

EC lifetime: (0)(t)


 

Bunch train with witness bunch, over time; compare wigglers on/off


 

If schedule allows, vent chamber; repeat

Interaction between elements


 

Study behavior of cloud adjacent to wiggler as a function of wiggler 
field; both for non- and for multipacting conditions



 

Tune arc dipole (Pivi)
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Thoughts on experiments (3)



 

Non-multipacting regime
– Measure EC energy distributions (RFAs), fit to three components 

of secondary distribution; compare with Cu, SS, Al measured 
elsewhere

– Compare drifts, dipoles, wigglers (on/off) (RFAs). Compare 
positrons and electrons.

– Record bunch tune shifts, bunch size



 

Multipacting regime
– Vary bunch spacing, bunch current, bunch train length
– Look for nonlinear pressure rise above multipacting threshold
– Measure EC energy distribution
– Compare drifts, dipoles, wigglers (on/off) (RFAs). Compare 

positrons and electrons.
– Record bunch tune shifts, bunch size
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Other possible diagnostics



 

Quadrupole sweeper (or more simply, as at KEKB)
– Quantify electron trapping in quads



 

Heat load
– Uncertainty of contribution of electron cloud a big issue for LHC
– Measured heat load twice as big as expected for cryocooled 

undulator at ESRF 
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Quadrupole diagnostic 
at PSR



 

EC suspected trapped 
in quadrupole fields at 
PSR (Macek) and KEKB 
(Fukuma)



 

Studies at PSR indicate 
EC lifetime in quads is 
orders of magnitude 
longer (~100 s) than in 
drifts (~100 ns)



 

Evidence that trapped 
electrons are ejected 
into neighboring drifts 
via EB



 

Preliminary KEKB data 
shows this happens in 
e+ rings also
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Fig. courtesy R. Macek (see also Proc. ECLOUD07, 52 (2007)).



K. Harkay     Photocathodes for ERLs - Part 1     ERL Journal Club, 2006 Oct 518

ES43Q sweeping near end of accumulation 



 

Sweeping ES43Q will remove a fraction of the electrons available 
to be ejected into the drift space 



 

At ES41Y see significant suppression of electrons during the 
sweeping pulse

95 A production beam

Slide courtesy R. Macek (see also Proc. ECLOUD07, 52 (2007)).
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Discussion



 

In the past decade, much progress has been made in understanding 
electron cloud generation and beam interaction, but the surface 
emission phenomenon remains complex and questions remain



 

Experimental data typically leads modeling efforts (exception was 
prediction of density stripes in dipoles (Furman, Zimmermann))



 

Flexibility and diagnostics suite at CesrTA offers excellent opportunity 
for systematic benchmarking of EC generation models, in particular 
for consistency between positron and electron beams



 

Suggestions for experiments focus on quantifying surface emission 
parameters, including both secondary and primary components of the 
cloud



 

CesrTA offers opportunity to understand greater success in modeling 
positron data compared with electron data (e.g., CesrTA, APS)



 

Focus on more accurate modeling of the photoelectron component 
based on measurements (DANE, SLAC/SSRL)
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