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• APS linac and bunch compressor overview

• Beam requirements and limitations

• CSR simulation methods

• Design simulation results

• Comparison of experiments and simulation

• Plans
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Beam Specifications for LEUTL F

• Prior to bunch compressor installation, ~15
achieved with ~0.7nC. Modest FEL gain w

• With the bunch compressor, up to 600A wa
~0.2nC. Saturation at 530nm and 385nm f

Energy Peak
Current

RMS
Energy
Spread

Normalized
Emittance

MeV A % um

217 300 <0.1% 5

457 600 <0.15% 5
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Limits on Injector Performance

• Space charge and rf focusing in the gun.

• Wakefields in accelerating tanks.

• Jitter of rf systems and laser.

• Rf curvature and other nonlinear transport e

• Coherent synchrotron radiation (CSR) in ch

With the exception of CSR, these are “easy”
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How CSR Affects the Bunch

• CSR imposes a longitudinal-position-depen
modulation on the bunch. This will show up
spectrum.

• This modulation is imparted inside a dipole
chicane, producing a modulation of the slop
trajectories.

• This results in a growth of the projected em
bending plane.

• CSR also introduces x-p correlations. Thes
on a vertical bend (“Dowell diagnostic”) afte
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Simulation of CSR Effects

• Inside dipoles, use free-space, 1-D formalis
al., in NIM A 398 (1997):

where R is the bend radius, is the angle
and . The two terms are

and
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where , is the slippage le

the longitudinal density of the bunch.

• Dipoles are cut into ~100 slices and the CS
computed from the longitudinal density at th
slice. This is used to modify the energy of e
particle.
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Simulation of CSR in Drift Space

• CSR effects are not confined to dipoles, as
continues to propagate with the beam.

• After dipoles, assume the terminal CSR wa
with gradual attenuation but fixed shape. Th
by detailed simulations (Dohlus et al.).

• Attenuation length is roughly given by the “o

length,” .

• Saldin et al. give equations for this radiation
rectangular beam distribution. In elegant , t
to determine how quickly the radiation atten

24σzR2( )1 3/
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Attenuation of CSR in Drift
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Simulation Method for APS Compre

• Photoinjector (J. Lewellen) uses PARMELA

• Simulate a nominal 1nC bunch.

• Scale the charge and emittance of this dis
match what we actually run.

• Linac-to-FEL uses elegant , including

• longitudinal and transverse matching

• longitudinal wakes

• exact rf curvature effects

• second-order matrix for quadrupoles

• symplectic integrator for chicane dipoles

• CSR in dipoles and drifts



ADVANCED PHOTON SOURCE Operations Analysis Group
http://www.aps.anl.gov/asd/oag Michael Borland borland@aps.anl.gov

R Effect
Example of Bunch Compression and CS
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Bunch Compressor Experiments

• Bunch compressor is fixed in position (cham
so we basically have two knobs: charge an

• Rf phase scans allow varying the energy ch
bunch length.

• We vary the rf voltage to keep the beam en

• Measurements include:

• “incoming” energy spectrum (at center of

• energy spectrum after chicane (vertical be

• emittance after chicane (three screen sys

• bunch length after chicane (rf zero-phasin
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Matching Simulation to Experime

• Knowledge of the initial longitudinal phase s
L2 is critical to getting the bunch length and
correct.

• Used elegant without CSR to match the me
length data by adjusting initial RMS longitud

• “Morphed” the PARMELA-generated bunch
same RMS longitudinal properites and emit
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Comparison with Bunch-Length-Matched S



ADVANCED PHOTON SOURCE Operations Analysis Group
http://www.aps.anl.gov/asd/oag Michael Borland borland@aps.anl.gov

amatic
Effect of Using a Gaussian Beam is Dr



ADVANCED PHOTON SOURCE Operations Analysis Group
http://www.aps.anl.gov/asd/oag Michael Borland borland@aps.anl.gov

s Match
...Even Though the RMS Bunch Length



ADVANCED PHOTON SOURCE Operations Analysis Group
http://www.aps.anl.gov/asd/oag Michael Borland borland@aps.anl.gov

nt

bend only

OL model

S54 model

.

CSR Model for Drifts is All-Importa

OL model uses Overtaking Length for
CSR attenuation in drifts.

S54 model uses equations 53-54 from
Saldin et al. for CSR attenuation in drifts

Standard 0.4nC
design simulations.

Bend only means no CSR in drifts.



ADVANCED PHOTON SOURCE Operations Analysis Group
http://www.aps.anl.gov/asd/oag Michael Borland borland@aps.anl.gov

30/01)

ase to vary the

the bunch
al bend (“DD”

4.3µm and
Impact of CSR on Energy Spectra (3/

• In this experiment, we again varied L2 rf ph
bunch length.

• We recorded beam profiles at the center of
compressor (“BCC” flag) and after the vertic
flag).

• Charge was 270pC, normalized emittances
3.1µm for x and y.
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Apparent Energy Spectra in Decompre
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Apparent Energy Spectra Near Maximum C
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Apparent Energy Spectra Near Maximum C



ADVANCED PHOTON SOURCE Operations Analysis Group
http://www.aps.anl.gov/asd/oag Michael Borland borland@aps.anl.gov

ing

tive of the

the tail.

wake that looks
erating leading

w in energy and
oves them

linearize (or
Why CSR Causes Energy Clump

• The CSR wake has the shape of the deriva
longitudinal density.

• CSR accelerates the head and decelerates

• A temporal clump produces a feature in the
like the derivative of the local density, accel
particles and decelerating trailing particles.

• In compression, the leading particles are lo
the trailing particles are high. Thus, CSR m
together into an energy clump.

• To reduce the impact of CSR, one needs to
thermalize) the longitudinal distribution.
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Vertical Bend Diagnostic (Dowell Diagnosti
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Ideas for Future Work on APS Bunch Com

• New PARMELA simulations of photoinjector
actual conditions.

• Improve resolution of bunch length measur

• Perform tomography to accurately determin
longitudinal phase-space.

• Quantify effect of horizontal beamsize in las

• Verify that effects are due to CSR rather tha
(Requires high charge.)

• Conduct experiments with variable and

(Requires completion of telescoping chamb

R56
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