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* |mproved injection into the SR

- Booster low emittance lattice commissioning

- Booster To Storage Ring (BTS) transport line
redesign for quantitative beam matching

* |[mproved injector reliability and availability
- Automated booster injection control

— Direct linac to booster injection commissioning
(bypass PAR)

— Booster subharmonic cavity for direct injection
e Bunch purity investigations
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Injector Configuration and Operation for Storage Ring Advanced
Operations Source A

Booster Parameters -
‘Injection Cycle: 2 Hz
Extraction Cycle: 2 Hz
‘Charge: 0.3-5nC/pulse
‘Injection Energy: 325 MeV
‘Extraction Energy: 7 GeV
‘Ramp Time: 225 ms

RG2 RG1

BTS To Storage
Ring

PAR Parameters - LINAC Parameters -

‘Injection Rate: 30 Hz ‘Pulse Rate: 2- 30 Hz

‘Injection Pulses. 1-5 Extracted Charge: 0.3-1nC
‘Extraction Cycle: 2 Hz -Extraction Energy: 325 MeV
-Extracted Charge: 0.3-5nC -Linac macropulse length 11-16 ns
‘Operating Energy: 325 MeV (RG2)




Booster Low Emittance Lattice Photon é

Motivation

* |mprove storage ring (SR) injection efficiency
for top-up operation
— Reduce beam |oss at injection
- Reduce radiation damage to the IDs

 Smaller spot size at the SR injection septum for
the same matched injection optics

— Reduce horizontal betatron oscillation at injection

— Reduce vertical betatron motion due to coupling
(small gap chambers ~5 mm)
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Booster Low Emittance Lattice Photon é

e Conventiona wisdom said the booster emittance
could not be reduced.

* With elegant, we can optimize the emittance
directly

- We found and explored a matrix of optics options

e \We then understood how to decrease the
emittance;

— Increase horizontal focussing using QF
— Decrease vertical focussing using QD
— Correct chromatic aberations with SF and SD
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e Conclusion was we needed to run QF and SD
stronger but still well within their limits.

e Asked for controls modifications to the
guadrupole magnets.

e Standard Lattice: 132 nm-rad (7 GeV)
o Systematically lowered this

- Low emittance lattice 1: 109 nm-rad
- Low Emittance Lattice 2: 92 nm-rad
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e Successfully commissioned two new lower
emittance lattices for the APS booster.

- Focusing and chromatic correction
— Orhit correction along the ramp
— Optics verification measurements

e Used 109 nm lattice from July 2002 to December
2002.

e Used 92 nm lattice since January 2003.

* Developed extensive set of software toolsto do
commissioning.
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e Goal Isto iImprove SR injection efficiency by
experimentally matching the booster beam to the
ring.

* EXisting diagnostics and optics are not adequate
for this task.

* Add five quadrupoles for optical flexibility.

e Add "3 screen” emittance measurement for rapid
beam parameter measurement and matching.

* This design borrows extensively from experience
with the linac systems.
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Booster Injection Control e ‘

* Top-up reguires consistent beam delivery every
2 minutes, 24/7.

* Thisrequiresinjecting beam into the booster so
that it ison the closed orbit for all 6 phase space
coordinates (energy,phase, x,x', y,y').

* |nthe past this was done manually by operators
with varying degrees of success and speed.

* | developed an algorithm to automate this

- Uses | OC software processing of the beam transient.
(F. Lenkszus ASD-CTL).

— Use the processed information to do feedback.
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Manual Booster Injection Control i
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Direct Linac to Booster Injection i 2
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e Short term motivation isto be able to fill thering
If the PAR isdown for extended period of time.

e A proposed long term goal isto remove the PAR
from the injector chain.

* | led the effort to commission direct injection.

* With S. Pasky, | trained each operations crew to
to setup direct injection according our written
procedure.

* Thereisnow an operations policy in place for
using this new capability.
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Injector Configuration and Operation for Direct Injection  savanced
US| ng rf Gun2 Source

BTS To Storage
Ring Booster Parameters -

‘Injection Rate: 2 Hz
‘Extraction Rate: 2 Hz
‘Charge: 0.3-2.2nCl/cycle
‘Extraction Energy: 7 GeV

RG2 RG1

\—-“-&ém
. LINAC Parameters -

‘Injection Rate: 2 Hz

‘Extracted Charge: 0.3 - 2.2 nC/cycle
‘Extraction Energy: 325 - 450 MeV
‘RG2 Macropulse Length: 11-16 ns
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Direct Linac to Booster Injection i 2
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e Commissioning was straightforward using
existing OAG linac software.

e Used existing emittance measurement/matching
software to match linac beam to the booster.

* Use PEM to standardize linac magnets, setup
Inac RF, and set timing.

* Direct injection hasagood lifetime (17 to 26
nours depending on coupling) when injecting
Into the standard 24 singlets fill pattern.

* Price one paysisin bunch purity
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Booster Subharmonic Capture i é

* Will allow capture of the linac macropulse to
with good bunch purity and efficiency.

* |deaisto add another rf cavity in the booster at a
subharmonic of 352 MHz.

* Kegp the existing booster linear magnet ramps.
e Onefindsfrom the ssmulations a set of tradeoffs.

- Lower frequency cavity can capture alonger linac
macropul se.

- Price is higher gap voltage and difficulty of
construction.

* Shorten gun kicker pulse and test along drive
pulse laser to get <~5ns(J. Lewdlen ITS). .
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PAR Bunch Purity -2

e A primary function of the PAR isto provide
good bunch purity for timing users

* We are trying to understand why it sometimes
doesn't

* Thelongitudinal dynamicsis quite similar to the
booster subharmonic capture problem

e Understanding the PAR's occassional problems
IS Important in designing the booster system
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* Another approach to bunch purity is resonant rf
knock-out of undesired particles

* The PAR Isan ideal placeto do this

- Beam is stored arelatively long time
- Energy islow

* Working with ASD-CTL and AOD-DIA we
recently made a proof-of-principle experiment

* Once implemented, this may largely immunize
us against PAR rf problems
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 OAG tools and technigues are well suited to
Improving injector performance, reliability, and
availability.

— Booster emittance reduction
— 6D Injection control

* Having a consistent set of tools and techniques
greatly aids in design and improvement of all
Injector machines.

e Physicists and programmers working closaly
together is one of OAG's great strengths.



