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Talk Overview

• What is a high-brightness electron gun, in context?
• What I will ignore 
• Areas of interest for new source development

- Linac-based light sources
- X-ray free-electron lasers (X-FELs)
- Storage-ring replacements (SRRs)

- IR and UV free-electron lasers
- Electron microscopes

• Common elements
• Ongoing injector development efforts

• Desktop Accelerator Development

• Conclusions & Wrap-Up
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RF Cavity – Accelerator Building Block
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Particle Acceleration
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What is an RF Photoinjector?

Caution:  laser radiation
Heartburn may result from use

Beam-o-
meter
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RF Gun Beam Dynamics

Launch phase ~ 35°
Gradient ~ 120 MV/m
No space charge included
No solenoid focusing included
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Why an RF gun?  (Or:  Why not DC guns?)
• Desired beam properties

- high bunch charge
- good transverse quality
- short bunches

• High bunch charge strong space charge

• Strong space charge poor beam quality

• Higher gradients more rapid acceleration less time for 
space charge to act

• RF guns are very good at providing high gradients … at a 
price.
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What is emittance?

• Transverse beam quality
• ~ product of spot size 

and divergence
• Phase space area
• Smaller is better x

x’

Actual distribution
RMS fit
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What is brightness?  What’s High-Brightness?

• One canonical definition:

• Another definition:

• The actual characteristics of a beam, relative to those 
which are of interest for the task we wish to perform with 
the beam

• In useful terms, brightness is situational.
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Important but ignored (by this talk)

• Drive laser development efforts

• High-brightness beam diagnostics (e.g. emittance
measurement)

• Operational reliability – transition from laboratory curiosity to 
facility keystone
- service & maintenance features
- mean time between failures
- soft vs. hard failure modes
- etc…
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Directions for Injector Development
C

ourtesy SLAC
/LC

LS

Courtesy LLNL

• “Big Iron” accelerators
- Linear colliders
- Next-generation x-ray light 

sources

• “Desktop” accelerators
- Electron microscopy
- Electron beam lithography
- Small laboratory experiments

• “Mini-Me” accelerators
- Radioisotope generation
- High-power free-electron lasers
- Slow positron production
- Pulse radiography
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Storage-Ring Replacements & X-FELs

X-ray Free Electron
Laser (X-FEL):

Coherence

Temporal Resolution
Storage-Ring
Replacement

(SRR):

Higher Peak Brightness

Improved Temporal
Resolution

“1st-generation” Linac Based Light Sources
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Linac-Based Light Sources – Source Specs

• Single-bunch requirements
- 0.1 µm normalized transverse emittance
- 0.1 nC
- 500 – 1500 A peak current (after linac compressor)
- 0.025% relative energy spread

• Duty factor requirements
- 10 – 100 mA (SRR gun)
- 120 Hz – 10 kHz (X-FEL gun)
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High-power IR and UV FELs

RF power used:  7 MW (to dump)Average beam current:  1A
Electron beam power:  150 MW

Wallplug efficiency:  ~ 10 – 20%
:  2 MW (FEL)

Optical beam power:  1 - 2 MW

Injector

7 MeV 50 MeV

Beam Parameters
Ipeak ~ 200 A
εn ~ 5 µm

δE/E ~ 0.1%
150 MeV
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High-power IR and UV FELs

Injector performance requirements
Transverse emittance:  3 – 5 µm
Longitudinal emittance: < 100 keV ps
Average beam current:  ~ 1 A
Single-bunch charge: 1 – 1.5 nC

Some other considerations…
Energy gain per gun cavity:  < 2 MeV
Beam break-up modes
Drive laser power requirements
Beam halo

 

99.9% of the beam

Halo power
7 kW @ injector
150 kW @ und.
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Electron Microscope Guns
Linac Injector Gun
• 1 – 5 MeV (kinetic)
• 0.1 – 1 nC / bunch
• nA – mA
• ~ 1 µm norm. emittance
• ~ 1% rms energy spread
• 1st-order optics (solenoid)

Electron Microscope
• 10 – 50 keV (kinetic)
• Bunches?  What bunches?
• few mA
• ~ 1 nm norm. emittance
• ~ 10-5 rms energy spread
• High-order optical corrections
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Directions of exploration...
Some different requirements
• “Big Iron”

- lower emittance (10x)
- higher peak currents (5x)
- emittance aspect ratio control

• “Desktop”
- ultra-low emittance (103x)
- very low energy spreads (10-5)

• “Mini-Me”
- (usually) modest beam quality 

(e.g. we can sometimes get there 
today)

- high average power (e.g. 1 MW 
from the gun for FEL)

- at least quasi-CW operation
- beam halo is a critical issue

Some common themes
• Higher performance levels than 

are routinely achieved today are 
demanded

• With few exceptions, the injector 
is a quasi-standalone component

• Injector reliability is key to the 
uptime of the entire facility

• Backup injector capability would 
be a large benefit

• “Beyond the beam physics” issues 
are very important
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An Interim Summary…

LCLS gun

TESLA X-FEL 
Gun

IR/UV ERL

Microscope
Gun

X-FEL, SRR 
Gun
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What is being modeled?

Beam

Cavity Fields

“Space
Charge”

Surface heating    
Wakes

Acceleration
Focusing

Synchrotron radiation

Retarded 
potentials

Beam loading
Beam Emission
e- secondary
Halo formation

Surface gradients

Shunt impedance
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Common Elements

Performance Figures
• Better cathodes
• Higher duty factors
• Better beam quality

R&D Requirements
• Cathode research
• Extended injector theory
• Expanded & improved 

simulation codes
cavity / beam 
interactions
wakefields
HOM effects
Beam halo

Fabrication Issues
• Improved symmetrization
• Thermal issues (cooling, 

transients)
• Higher-capacity power 

couplers
• Routine maintenance
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A Word on Photocathodes…

Harmonic laser power 
needed for: 

Cathode Material 
Quantum 
Efficiency 

Operating 
Wavelength 10 mA 100 mA 

Fundamental 
laser power for 
100 mA 

Copper 10-5 266 nm 4.6 kW 46 kW ~ 750 kW Metal 
Magnesium 5·10-5 266 nm 930 W 9.3 kW ~ 150 kW 

CsTe 0.5% 266 nm 9.3 W 93 W ~ 1.5 kW 
Alkali, NEA 5% 532 nm 0.46 W 4.6 W ~ 20 W 

Drive laser requirements

Target emittance σx < …*

5 µm (IR, UV FEL) 1.8 mm
1 µm (LCLS) 0.36 mm
0.1 µm (SRR, X-FEL) 36 µm
1 nm (E-microscope) 0.36 µm

mmm)31(
cm
Em2

x
e

kine
rmsrms,thermal

µ−=

=ε

* for Ek = 1 eV;  √2 εth ≤ εtotal
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Injector Development Efforts:  Simulations
• DC guns:

- 0.1 µm @ 0.08 nC

• SRF guns:
- εn ~ 5 nm, δE/E ~ 5x10-5, Ek ~ 1.7 MeV, Iavg ~ 90 µA
- εn ~ 0.1 µm @ 0.05 nC
- εn ~ < 5 µm @ 1 A

• NC guns:
- needle cathode:  0.05 µm @ 0.02 nC
- planar focusing cathode:  0.13 µm @ 0.1 nC

Simulation Results:  
• No thermal emittance included!
• Single-bunch performance only!
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Injector Development Efforts:  Who & What?
• Cornell

- DC guns for ERLs
- massive concurrent processing & 

optimization using ASTRA
• Advanced Energy Systems

- DC/SRF hybrid with JLab
- NC-CW for IR-FEL with LANL
- SRF CW with BNL and JTO
- High-duty-factor with SLAC
- Polarized source studies

• SPring-8 / Riken / KEK
- DC gun for FEL

• LBNL
- High-rep-rate NC guns

• TU-Eindhoven
- DC/RF hybrid NC guns

• Vanderbilt
- Needle cathodes

• LANL
- high-power CW NC guns

• Stanford / SLAC
- Polarized-beam gun
- High-duty-factor NC operation
- Multifrequency gun designs

• BNL
- SRF gun with AES & Rossendorf
- Electron cooling injectors

• DESY & PITZ
- High-rep-rate NC guns
- Next-generation injector research

• FNAL
- Flat-beam production
- LN2-cooled NC guns

• Rossendorf
- fully SRF gun development w/ novel 

focusing
• ANL

- high-power CW NC & SRF guns
- e-microscope guns (just starting)



25

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Directions for Electron Beam Injector DevelopmentJohn W. Lewellen 3 September 2004

Injector Development Efforts:  Cathodes

• Brookhaven National Laboratory
- Nb cathodes (“native” SRF gun cathodes)
- Diamond-plate secondary-emission cathode

• U. Maryland & Naval Research Laboratory
- Thermionic-assisted photocathodes
- General cathode emission theory

• SPRING-8
- DC gun cathodes

• SLAC
- Polarized electron cathode for RF guns
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Parting thoughts – Part 1

• Injector development is proceeding in many directions.

• Many designs begin to approach materials & technological 
limits (e.g. thermal emittance, rf coupler power handling).

• Many common themes unite the work, including:
- need for more cathode research for better cathodes (lifetime, 

QE, εthermal), and
- need for theory & simulations with expanded capabilities to take

into account new design features.

• This is an exciting time to be working on injector design
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Desktop Accelerator Development

• Interesting things to do with just a gun

• Choices for cathodes 

• General limitations
- Duty factor
- Drive laser

• Losing the laser

• Some performance calculations

• Concluding remarks and thoughts
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Fun Gun Things (no linacs required)

• Particle beam & accelerator physics
- basic beam physics measurements
- beam manipulation
- diagnostics development

• Applications
- Electron microscopy
- Long-wavelength radiation generation
- E-beam welding
- Cancer therapy
- Etc…

• Teaching
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Beam Emission Timing
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Cathode Overview
Photocathodes

Emission mechanism:  Use laser pulse to 
excite electrons off the cathode surface

“Ideal” Cathode Checklist:
Long lifetime
Rapidly switchable on/off
Damage resistant
High charge density
Cryogenic compatible
Simple operation

Thermionic cathodes

Emission mechanism:  heat the cathode to 
“boil” the electron sea in the metal

Advantages:
Long lifetime
Robust
Simple to 
operate

Disadvantages:
Not rapidly
switchable
High temperature 
required

Advantages:
Rapidly
switchable
High charge 
density

Disadvantages:
Efficiency-lifetime 
tradeoffs
External drive 
laser required

Field-emission cathodes

Emission mechanism:  Electric field pulls 
electrons from cathode surface

Advantages:
Very simple
High charge 
density
Rapid turn-
on/off

Disadvantages:
Problematic gating 
(for rf app.)
Damage questions
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Limitations on Electron Gun Performance

• Duty factor
- Field gradients of 10 – 100 MV/m, over 10s of cm, desired
- Cu cavity guns:  max. duty factor 25% to date

- low-frequency
- anything but compact

- SRF gun developments promise true CW operation

• Drive laser
- Laser rep rates often lower than gun rf frequencies

- higher charge per pulse for same <I>
- higher laser energies required

- Unobtainium cathodes needed for true CW & long-life operation
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Field Emission Cathode Gating Scheme
FE cathodes emit electrons when the field is high enough
• operate at low temperature (unlike thermionic cathodes)
• emit only under “internal” influences (unlike photocathodes)
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Can these fields be realized?

Z:\gun\design\MICROS~1\beamsim\parmela\CathPos\AUTOCATH.SF  5-17-2004  14:08:22
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Problem title line 1: Design of a cathode cell for a dual-frequency, srf, electon microscope gun
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Will it work?
• Simulation:

- Incorporated the Shottky
emission model directly

- Also includes space-charge 
effects
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Expected scaling – emittance

Beam current 
in mA
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Expected scaling – energy spread

Beam current 
in mA
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Sample calculation #1 – e-beam welder

• Requirements
- Modest beam quality
- High beam power density
- Long depth-of-focus

I = 5 mA
σx = 0.45 mm
εn,x = 3.6·10-2 µm focusing coil 2-m drift

Multifrequency
FE-cathode gun

3rd-harmonic
linearizer

1st-harmonic
linearizer

σtheory ~ 75 µm

σsim ~ 94 µm

final-focus 
test spot
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Scale drawing of welder system
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Sample calculation #2 – microscope front-end

• Requirements:
- low energy spread beam
- high transverse quality

After 3rd-harmonic linearizer:

- εn,x = 3.1·10-3 µm

- εn,y = 6.3·10-3 µm

- δE = 110 V
0.1 mA, 0.005%
energy spread

0.1 mA, 2%
energy spread0.5 mA, 10%

energy spread

50 µA 0.001%
energy spread

(expected)

Multifrequency
FE-cathode gun

1st-stage 
energy filter

3rd-harmonic
linearizer

2nd-stage 
energy filter



41

Pioneering 
Science and
Technology

Office of Science
U.S. Department 

of Energy

Directions for Electron Beam Injector DevelopmentJohn W. Lewellen 3 September 2004

Towards a High-Voltage Electron Microscope?

• Cavity design can be improved
- “Mark I” design used for example
- Not optimized for lowest possible emittance

• Alternate means of reducing energy spread
- Add more harmonics to further flatten pulse?
- Different beamline geometries to better preserve emittance

• Focusing system & abberation correction – study needed

• Present design represents about 6 months of part-time effort 
from one accelerator physicist and one vacuum engineer.
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Recap & Concluding Thoughts

• Field emission cathodes hold great promise for future 
“desktop” injector development
- lower maintenance & upkeep than drive lasers
- modest bunch charge for low emittance
- high average beam currents for high-power operation

• Several applications immediately suggest themselves
- microscope gun
- e-beam welder

• Some advanced applications also interesting
- THz radiation source
- cancer therapy
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Linac-Based Light Sources
X-FELs:  Minimize size of linac and undulator
• lowest possible beam energy for a given wavelength
• saturation length “balanced” between emittance, energy 

spread and diffraction
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Linac-Based Light Sources - SRRs

• Obtain > 100x peak brightness over 3rd-generation facilities
• Obtain ps-scale or better bunch durations

y,nx,n

22 INB
εε

γ
∝ωω∆

Source
Norm. 

Transverse
Emittance [µm]

Bunch 
Charge

[nC]

APS 3 – 18
1.0
0.1
0.1

S-band Gun
New Gun (I)
New Gun (II)

Bunch 
Length 

[ps]

Peak 
Current

[A]

Peak 
Brightness 

Enhancement

Avg. 
Brightness 

Enhancement

43 x 0.5 20 - 40 300   1 1*    

1 x 1 0.33 3000†  45 45*    

0.1 x 0.1 0.1  1000†  135 135*  

0.1 x 0.1 0.1  1000†  135 13.5‡

†  With linac-based bunch compressor
‡  Assuming 10 mA average beam current
*  Assuming 100 mA average beam current
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Linear Collider Guns

Q: Why pursue high-brighness electron guns for LCs?
A: Damping rings are very expensive;  potential payoff is great

What are the basic requirements for a LC gun?
• Capable of generating polarized electron beams
• Capable of generating “flat” beams

- damping ring elimination would be ideal
- reducing damping ring complexity (size, cost) still worthwhile
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Linear Collider Guns – Flat Beam Production

Emittance
Compensation 

Solenoid

RF Gun

Transformation 
Optics Asymmetric Beam

Emittance:  “Flat” Beam
Magnetized 

beam

Bucking 
Coil FNAL:  50:1 ratios measured
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Polarized Electron Beam Production

• Method:  Use a “strained” semiconductor cathode with NEA 
surface to generate polarized electrons

• Successfully used with DC guns

• Issues
- Lifetime

- RF gun vacuum environment
- back-bombardment ions and electrons

- Dark current
- NEA surface, high gradient fields
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A Word on Cathodes…

Harmonic laser power 
needed for: 

Cathode Material 
Quantum 
Efficiency 

Operating 
Wavelength 10 mA 100 mA 

Fundamental 
laser power for 
100 mA 

Copper 10-5 266 nm 4.6 kW 46 kW ~ 750 kW Metal 
Magnesium 5·10-5 266 nm 930 W 9.3 kW ~ 150 kW 

CsTe 0.5% 266 nm 9.3 W 93 W ~ 1.5 kW 
Alkali, NEA 5% 532 nm 0.46 W 4.6 W ~ 20 W 

Drive laser requirements

Target emittance σx < …*

5 µm (IR, UV FEL) 1.8 mm
1 µm (LCLS) 0.36 mm
0.1 µm (SRR, X-FEL) 36 µm
1 nm (E-microscope) 0.36 µm

mmm)31(
cm
Em2

x
e

kine
rmsrms,thermal

µ−=

=ε

* for Ek = 1 eV;  √2 εth ≤ εtotal
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