next up previous
Next: ZTRANSVERSE Up: Element Dictionary Previous: WIGGLER

ZLONGIT

A simulation of a single-pass broad-band or functionally specified longitudinal impedance.
Parameter Name Units Type Default Description
CHARGE $C$ double 0.0 beam charge (or use CHARGE element)
BROAD_BAND   long 0 broad-band impedance?
RA $Ohm$ double 0.0 shunt impedance
RS $Ohm$ double 0.0 shunt impedance (Ra=2*Rs)
Q   double 0.0 cavity Q
FREQ $Hz$ double 0.0 frequency (BROAD_BAND=1)
ZREAL   STRING NULL $<$filename$>$=$<$x$>$+$<$y$>$ form specification of input file giving real part of impedance vs f (BROAD_BAND=0)
ZIMAG   STRING NULL $<$filename$>$=$<$x$>$+$<$y$>$ form specification of input file giving imaginary part of impedance vs f (BROAD_BAND=0)
BIN_SIZE $S$ double 0.0 bin size for current histogram (use 0 for autosize)
N_BINS   long 128 number of bins for current histogram
WAKES   STRING NULL filename for output of wake
WAKE_INTERVAL   long 1 interval in passes at which to output wake
AREA_WEIGHT   long 0 use area-weighting in assigning charge to histogram?
INTERPOLATE   long 0 interpolate wake?
SMOOTHING   long 0 smooth current histogram?
SG_ORDER   long 1 Savitzky-Golay filter order for smoothing
SG_HALFWIDTH   long 4 Savitzky-Golay filter halfwidth for smoothing
REVERSE_TIME_ORDER   long 0 Reverse time-order of particles for wake computation?
FACTOR   double 1 Factor by which to multiply impedance.





This element allows simulation of a longitudinal impedance using a ``broad-band'' resonator or an impedance function specified in a file. The impedance is defined as the Fourier transform of the wake function

\begin{displaymath}
Z(\omega) = \int_{-\infty}^{+\infty} e^{-i \omega t} W(t) dt
\end{displaymath} (11)

where $i = \sqrt{-1}$, $W(t)=0 for t<0$, and $W(t)$ has units of $V/C$.

For a resonator impedance, the functional form is

\begin{displaymath}
Z(\omega) = \frac{R_s}{1 + iQ(\frac{\omega}{\omega_r} - \frac{\omega_r}{\omega})},
\end{displaymath} (12)

where $R_s$ is the shunt impedance in $Ohms$, $Q$ is the quality factor, and $\omega_r$ is the resonant frequency.

When providing an impedance in a file, the user must be careful to conform to these conventions.

Other notes:

  1. The frequency data required from the input file is not $\omega$, but rather $f = \omega/(2 \pi)$.
  2. The default smoothing setting (SG_HALFWIDTH=4), may apply too much smoothing. It is recommended that the user vary this parameter if smoothing is employed.

next up previous
Next: ZTRANSVERSE Up: Element Dictionary Previous: WIGGLER
Robert Soliday 2004-04-21