next up previous
Next: NISEPT Up: Element Dictionary Previous: MULT

NIBEND

A numerically-integrated dipole magnet with various extended-fringe-field models.
Parallel capable? : yes
Parameter Name Units Type Default Description
L $M$ double 0.0 arc length
ANGLE $RAD$ double 0.0 bending angle
E1 $RAD$ double 0.0 entrance edge angle
E2 $RAD$ double 0.0 exit edge angle
TILT   double 0.0 rotation about incoming longitudinal axis
DX $M$ double 0.0 misalignment
DY $M$ double 0.0 misalignment
DZ $M$ double 0.0 misalignment
FINT   double 0.5 edge-field integral
HGAP $M$ double 0.0 half-gap between poles
FP1 $M$ double 10 fringe parameter (tanh model)
FP2 $M$ double 0.0 not used
FP3 $M$ double 0.0 not used
FP4 $M$ double 0.0 not used
FSE   double 0.0 fractional strength error
ETILT $RAD$ double 0.0 error rotation about incoming longitudinal axis
ACCURACY   double 0.0001 integration accuracy (for nonadaptive integration, used as the step-size)
MODEL   STRING linear fringe model (hard-edge, linear, cubic-spline, tanh, quintic, enge1, enge3, enge5)
METHOD   STRING runge-kutta integration method (runge-kutta, bulirsch-stoer, modified-midpoint, two-pass modified-midpoint, leap-frog, non-adaptive runge-kutta)
SYNCH_RAD   long 0 include classical synchrotron radiation?
ADJUST_BOUNDARY   long 1 adjust fringe boundary position to make symmetric trajectory? (Not done if ADJUST_FIELD is nonzero.)

A numerically-integrated dipole magnet with various extended-fringe-field models.
Parameter Name Units Type Default Description
ADJUST_FIELD   long 0 adjust central field strength to make symmetric trajectory?
FUDGE_PATH_LENGTH   long 1 fudge central path length to force it to equal the nominal length L?
FRINGE_POSITION   long 0 0=fringe centered on reference plane, -1=fringe inside, 1=fringe outside.
GROUP   string NULL Optionally used to assign an element to a group, with a user-defined name. Group names will appear in the parameter output file in the column ElementGroup





For the NIBEND element, there are various fringe field models available. In the following descriptions, $l_f$ is the extend of the fringe field, which starts at $z=0$ for convenience in the expressions. Also, $K = \frac{1}{g}\int_-\infty^\infty F_y(z) (1-F_y(z)) dz$ is K. Brown's fringe field integral (commonly called FINT), where $g$ is the full magnet gap and $\vec{F} = \vec{B}/B_0$, $B_0$ being the value of the magnetic field well inside the magnet.


next up previous
Next: NISEPT Up: Element Dictionary Previous: MULT
Robert Soliday 2014-03-21