next up previous
Next: NIBEND Up: Element Dictionary Previous: MRFDF

MULT

A canonical kick multipole.
Parallel capable? : yes
Parameter Name Units Type Default Description
L $M$ double 0.0 length
KNL $M^{-ORDER}$ double 0.0 integrated geometric strength
TILT $RAD$ double 0.0 rotation about longitudinal axis
BORE $M$ double 0.0 bore radius
BTIPL $T M$ double 0.0 integrated field at pole tip, used if BORE nonzero
DX $M$ double 0.0 misalignment
DY $M$ double 0.0 misalignment
DZ $M$ double 0.0 misalignment
FACTOR   double 1 factor by which to multiply strength
ORDER   long 1 multipole order
N_KICKS   long 4 number of kicks
SYNCH_RAD   long 0 include classical synchrotron radiation?
GROUP   string NULL Optionally used to assign an element to a group, with a user-defined name. Group names will appear in the parameter output file in the column ElementGroup





This element simulates a multipole element using 4th-order sympletic integration. A single multipole order, $n$, is given. The multipole strength is specified by giving

\begin{displaymath}
K_n L = \left(\frac{\partial^n B_y}{\partial x^n}\right)_{x=y=0} \frac{L}{B\rho},
\end{displaymath} (37)

where $B\rho$ is the beam rigidity. A quadrupole is $n=1$, a sextupole is $n=2$, and so on.

The relationship between the pole tip field and $K_n L$ is

\begin{displaymath}
K_n L = \frac{n! B_{tip} L}{r^n (B\rho)},
\end{displaymath} (38)

where $r$ is the bore radius.


next up previous
Next: NIBEND Up: Element Dictionary Previous: MRFDF
Robert Soliday 2014-06-26