Next: MAXAMP Up: Element Dictionary Previous: MATR

## MATTER

A Coulomb-scattering and energy-absorbing element simulating material in the beam path.
Parallel capable? : yes
 Parameter Name Units Type Default Description L double 0.0 length XO double 0.0 radiation length ELASTIC long 0 elastic scattering? If zero, then particles will lose energy due to material. ENERGY_STRAGGLE long 0 Use simple-minded energy straggling model? Ignored for ELASTIC scattering. Z long 0 Atomic number A double 0.0 Atomic mass RHO double 0.0 Density PLIMIT double 0.05 Probability cutoff for each slice GROUP string NULL Optionally used to assign an element to a group, with a user-defined name. Group names will appear in the parameter output file in the column ElementGroup

This element is based on section 3.3.1 of the Handbook of Accelerator Physics and Engineering, specifically, the subsections Single Coulomb scattering of spin- particles, Multiple Coulomb scattering through small angles, and Radiation length. There are two aspects to this element: scattering and energy loss.

Scattering. The multiple Coulomb scattering formula is used whenever the thickness of the material is greater than , where is the radiation length. (Note that this is inaccurate for materials thicker than .) For this regime, the user need only specify the material thickness (L) and the radiation length (XO).

For materials thinner than , the user must specify additional parameters, namely, the atomic number (Z), atomic mass (A), and mass density (RHO) of the material. Note that the density is given in units of . (Multiply by to convert to .) In addition, the simulation parameter PLIMIT may be modified.

To understand this parameter, one must understand how elegant simulates the thin materials. First, it computes the expected number of scattering events per particle, , where is the number density of the material, L is the thickness of the material, , and , with the classical electron radius and the fine structure constant. The material is then broken into slices, where . For each slice, each simulation particle has a probability of scattering. If scattering occurs, the location within the slice is computed using a uniform distribution over the slice thickness.

For each scatter that occurs, the scattering angle, is computed using the cumulative probability distribution . This can be solved for , giving . For each scatter, is chosen from a uniform random distribution on .

Energy loss. Energy loss simulation is very simple. The energy loss per unit distance traveled, , is . Hence, in traveling through a material of thickness , the energy of each particle is transformed from to .

Energy straggling. This refers to variation in the energy lost by particles. The model used by elegant is very, very crude. It assumes that the standard deviation of the energy loss is equal to half the mean energy loss. This is an overestimate, we think, and is provided to give an upper bound on the effects of energy straggling until a real model can be developed. Note one obvious problem with this: if you split a MATTER element of length L into two pieces of length L/2, the total energy loss will not not change, but the induced energy spread will be about 30% lower, due to addition in quadrature.

Next: MAXAMP Up: Element Dictionary Previous: MATR
Robert Soliday 2013-05-28