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Total External Reflection and X-ray Mirrors

The index of refraction for x-rays can be calculated using a simple model
for the polarizability of the material.

The index of refraction, n,  is related to the dielectric constant, k, for the
material and can be written as:

κ1/2  =  n  = 1 - δ - iβ

where δ =  (nere/2π)λ2 with ne the number of electrons per unit volume
and β = λµ/4π, with µ the linear absorption coeff icient.



Let an x-ray (in vacuum, where n1 = 1) impinge on a material with
index of refraction n2.  From Snell's Law, it is clear that φ2 > φ1, since n2

< 1. When φ2 = 90°, we have:

sin(φc) = cos(θc) = n2cos(0);    (θc = 90° - φc)

or

1 - (θc)2/2 = 1 - δ

So

θc = (2δ)1/2
  = C λ √ρ

θc is the so-called critical angle, the angle at which there is total external
reflection.
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Uses of Mirrors

Separation of branch lines

Low pass fil ters

One-dimensional focusing, collimating, etc. (cylinders and ellipses)

Two-dimensional f ocusing (toroids and ellipses)



The relationship between the focal length, f , the source-to-mirror distance,
F1, and the mirror-to-image distance, F2, the radius of curvature, Rm

(for meridional radius) and the grazing incidence angle is given by the
"lens" equation:

1/f = 1/F1 + 1/F2

then

Rm = [2/sin θ] [F1 F2/(F1 + F2)]

Rs = Rm sin2 θ



Example:  A bent toroidal mirror is installed on the bending magnet
beamline at the APS fol lowing a DCM.

Given:

F1 = F2 = 30m

Θ =  (2.5 mrad)

φv ≈ 1/γ = 73 microradians; φH = 1 mrad

σx = 100 microns; σy = 40 microns

The calculated parameters for this situation are:

Rm  = 12 km Rs  =  0.075 m  (7.5 cm)

Lvert = 0.88 m Lhor = 0.60 m

Lm = L1 + L2 ≈ 1.5 m

φvertical 
extremal = 100 microradians

Acly = 140 microns



Figure and finish

The mirror f igure is of ten defined as the overall (macroscopic) shape of
the mirror while the finish describes (microscopic) roughness.

With radiation opening angles on the order of 10 microradians or less, the
current requirement for the slope errors for an x-ray mirror is a few
microradians rms.The 1 microradian rms level over a mirror of length
1 meter is at the state-of-the-art in polishing capabilities.

Mirror finish is also technically challenging for fabricators with specif ied
rms roughnesses on the order of several Ångstroms.  State-of-the-art
mirror polishing techniques can result in mirror surfaces with sub-
Ångstrom rms roughness and sub-microradian rms slope errors over
small areas.



Diffraction by Perfect Crystals

In Darwin's 1914 analysis which took into account multiple scattering,
(i.e. he self -consistantly solved Maxwell’s equations in a medium with
a periodic dielectric constant), he discovered several important points:

The resultant waves inside the crystal travel with a group velocity
slightly greater than the speed of l ight (i.e. the index of refraction must
be slightly less than unity) resulting in a slight shif t in the Bragg angle
(as def ined by Bragg's Law).

At that corrected Bragg angle the reflectivity is 100% (neglecting
absorption) and the reflectivity curve has a f inite angular width (what
we now call the Darwin width).



Diffraction by Perfect Crystals

The Darwin width is proportional to the structure factor and hence the
integrated intensity must be proportional to F (and not F2 as is the case
in kinematical theory).

Due to extinction (the attenuation of the incident beam due to the
scattering process) the ef fective volume of the scattering medium that
participates in the diff raction process decreases signif icantly within the
Darwin width.
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Phase Space Manipulation with Perfect Crystals
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Sagittal Focusing with Perfect Crystals

Recall that sagittal focusing is focusing out-of-the-plane of
dif f raction.

The ideal geometry for point-to-point focusing is one in which the
reflecting crystal planes are curved to an ellipsoidal shape.

However we will continue to use a cylindrical shape in which case
the sagittal radius, Rs, i s given by:

Rs =  2sin θ [F1 F2/( F1 + F 2)].

One of the reasons cylindrical shapes are so appealing is that they
can (relatively) easily be produced by bending flat plates to
cylinders.





Compound Refractive Lenses

X-ray lenses have been considered for many years.  Kirkpatrick and
Baez pointed out that:

Roentgen's f irst experiments convinced him that x-rays could
not be concentrated by lenses; thirty years later his successors
understood why.  It may readily be shown that the focal length
f of a single refracting surface of radius R is approximately
R/δ.  For several surfaces in series, arranged cooperatively, we
have 1/f = δ (1/R1 + 1/R2 + etc.).  To make a successful lens
we require a large δ and slight absorption.

Unfortunately materials of large δ are also strong absorbers, the
absorption coeff icient increasing much more rapidly than δ with
increasing atomic number.  An element of low atomic number, such as
beryllium, is indicated.
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What has happened over the last several years that now makes the
compound lens a possibili ty?  The answer is high brill iance
synchrotron radiation beams.

Consider a cylindrical hole of radius R machined into some material
with index of refraction given by n = 1-δ.  This will act as a lens for x-
rays with a focal length, f , given by:

1/f = δ(1/R + 1/R)

or

f = R/2δ



If a linear array of N holes are fabricated the focal length is given by:

f = R/2Nδ

Plugging in some numbers, suppose that R = 1 mm (see below),
δ ≈ 10-6, and N = 50 then the focal length, f ,  would be at  10 m.   These
lenses focus at rather larger distances and might be well adapted to the
scale of synchrotron radiation beamlines.

These x-ray lenses behaves as a conventional lens and we can use the
thin lens formula to describe its properties:

1/f = 1/F1 + 1/F2

where F1 (F2) is the source-to-lens (lens-to-image) distance.



Fresnel Zone Plates

Zone plates in the optical region of the spectrum have been well
known for many years and in Baez 1952 suggested that zoneplates
might be useful in the VUV region of the spectrum.

Again, due to their small size (typically considerably less than 1 mm
in diameter) they only became practical with the avai lability of
highly coll imated synchrotron radiation.

Today, the use of zone plates for the two-dimensional focusing of x-
rays is well established in the synchrotron community, especially in
the soft x-ray microscopy community and becoming increasingly so
in the hard x-ray regime.



Zone plates are circular diff raction gratings; that is structures
composed of alternating concentric zones of two materials with
dif ferent (complex) refractive indices.

The focusing capability is based on constructive interference of the
wavefront modif ied by passage through the zone plate.

The wave that emerges from the zone plate is the superposition of
spherical waves, one f rom each of the zones.

The wavefront modif ication is obtained through the introduction of a
relative change in amplitude or phase in the beams emerging f rom
two neighboring zones.



A zone plate is called an amplitude zone plate if the focusing results
because waves of the "wrong" phase are removed by opaque (high
absorption) zones.

It is called a phase zone plate if the phase change upon transmission
through a zone is the mechanism f or the focusing.



Consider the figure below where Rn is the distance from P to the outer
boundary of the nth "zone", which has as a radius rn, and f is the focal
length.
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For constructive interference, the pathlength f rom the nth zone and the
(n+2)th zone should dif fer by a (multiple m of the) wavelength, or the
pathlength of adjacent zones should dif fer by a (multiple m of the) half
wavelength, i .e.,

Rn = f + m(λ/2)n      n = 1, 2, 3.... ,

The radius, rn, of the nth zone can be written as (assuming f >> nλ):

rn = (mfλn)1/2

The focal length for the mth order can be written as:

f m = rn
2/ mλn



In general, the size of the focal spot from the zone plate is
determined by the width of the outermost ring,  ∆rout , and is given by:

∆x  = 1.22 ∆rout/m .

State of the art zone plate masks are fabricated with e-beam writers
and then reproduced with x-ray lithographic techniques.

Zones plates with outermost ring widths of less than 30 nanometers
can currently be fabricated.

If illuminated with an x-ray beam whose spatial coherence length is
equal to or greater than the size of the zone plate, a dif f raction-limited
focus can be obtained.


