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A thermal buckling analysis for a diamond disk in the commissioning window assembly designed
for x-ray beamlines at the Advanced Photon Source is presented. The analytical solution together
with associated numerical analysis help to predict the critical temperature of the diamond disk before
a thermal buckle occurs.  © 1996 American Institute of Physics.
I.  INTRODUCTION

A commissioning filter and window assembly has been
designed1 for the Advanced Photon Source (APS) insertion-
device (undulator A) front ends.  A multipurpose transmitting
filter/beam position monitor (BPM) in this assembly is made
of a 127-µm-thick, 1-inch-diameter diamond disk.  The high
heat flux from the insertion device deposited on the thin
diamond disk induces high thermal stresses.  Because
diamond is a brittle material, thermal buckling is a critical
issue.  The temperature,2 thermal stress, and thermal
buckling closed-form solutions for a thin disk are presented in
this paper.  The heat flux from the x-ray is simulated as an
axisymmetrical Gaussian-distributed heat flux.  The finite
element code ANSYS was also used to simulate the real
boundary conditions.

II.  NOMENCLATURE

Critical buckling temperature Tcr [oC]
Temperature T [oC]
Max. temperature Tmax [oC]
Potential energy V [N m]
Thermal conductivity k [W/(m K)]
Max. heat flux q0 [W/m2]
Thickness t [m]
Radius of the thin disk a [m]
Standard deviation σ0 [m]
Plate stiffness D [N m]
Off plane deflection w [m]
Radial deformation ur0 [m]
Radial stress before buckle σrr0 [MPa]
Young’s modulus E [MPa]
Thermal expansion coefficient α [1 × 10-6/K]

III.  CLOSED-FORM SOLUTION

Considering a thin disk subjected to an axisymmetrical
Gaussian-type power heating (in Fig. 1), in-plane radial
compressive stress will occur in the center. As a result,
buckling will occur if the “critical load” is reached.  It is
convenient to define the so-called critical load, that is the
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minimum heat load needed before the material buckles.  As
to the thermo-driven load, the peak temperature will be more
appropriate to be used as an index in determining when the
buckle takes place.3  In general, even though the circular disk
is subjected to the axisymmetrical heat load, the buckling
deflection w might not be axisymmetrical.  In other words,
“skirt wrapping” might occur on the periphery of the disk.
In our problem, we assume the power distribution striking on
the surface is much narrower than the disk itself, therefore the
buckling will take place locally within the center region, and
the skirt wrapping effect is assumed to be negligible in our
problem.  Thus the off-plane deflection w  is assumed to be a
function of r only.  The potential energy equation is written
as
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The general solutions4 for ur0 and σrr0 are
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The boundary conditions are

ur0 0=  as r → 0  and T = 0, σrr0 0=  as r a→ .

The governing equation for a thin disk with an
axisymmetrical, Gaussian-distributed heat flux is
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The boundary conditions (in Fig. 1) are

T = 0 when r = a, and T = finite when r = 0.
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FIG. 1.  The boundary conditions for a thin disk.

The temperature field T r( ) ,2 is given as:
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where E1(x) denotes exponential function of the first kind.
The constants K1 & K2 in Eqs. (2) and (3) are found to be
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and where E2(x) is the exponential function of the second
kind.  The maximum temperature Tmax must be located at

the center of the disk, which results in:
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γ = 0.57721… is Euler’s constant. And the temperature field
in Eq. (4) can be rewritten as
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By substituting Eq. (9) into Eq. (7), and then Eq. (7) into
Eq.(5), σrr0 in Eq. (3) can be rewritten as

σrr T F r0 = ( )max . (10)

The off-plane deflection w  satisfies
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To find the critical buckling temperature Tcr, a minimum
state of the potential energy has to be reached.  Substituting
Eqs. (10) and (11) into Eq. (2), then, it leads to a infinite
Eigen system equation:
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in which only the undetermined coefficients Ci and Tcr are
involved in the system equations.  For those coefficients to
have a nontrivial solution, the determinant of the matrix has
to be zero.  That is, Tcr is represented as a value in the
matrix.  Some numerical results are listed by choosing
different numbers of undermined coefficients Ci.  The
component of matrices A  and B  are summarized as:
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It is interesting to see that the second term of the integrals in
Eq. (13) vanishes.

IV.  PARAMETRIC STUDIES

We assumed the diamond disk is the first component in
the x-ray path.  The total power deposited on the diamond
disk is calculated by the code “UA”5 (see [2] for more
details.).  Substituting Eqs. (5), (6), and (7) into Eq. (3),
σrr0 becomes
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For simplicity, if only three terms are chosen, the off-plane
deflection w  in Eq. (11) can be simplified as:

w r a C C r C ro= − + +( )( )2 2
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and matrix A in Eq. (13) is solved as:
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Figure 2 shows the Tmax (in Eq. (8)) vs. t (µm; thickness)
and 2a (mm; diameter) of the diamond disk (k = 1000 W/
(m K)).  Figure 3 shows the maximum σrr0 (MPa)
during operation vs. t and 2a (E = 11.8 × 105

 MPa,
α = 2.6 × 10-6/K, ν = 0.15).  The yield strength of diamond
is about 900 MPa on the nucleation side and about 350 MPa
on the growth side (the off-plane direction).  The temperature
is uniform along the off-plane direction; the thermal stress is
almost zero in that direction.  Therefore, σrr0 in Fig. 3 is
compared with the yield strength of 900 MPa.  Figure 4
shows the Tcr  vs. t (µm) and 2a (mm) of the disk.  For a
given a, t, q0 , σ0, E, α , and ν , Tcr is determined.  If the
calculated Tmax (in Fig. 2) during operation is smaller than
Tcr (in Fig. 4), the diamond disk is free from thermal
buckling.

V.  PARAMETRIC STUDIES WITH ANSYS CODE

This section will discuss the parametric studies (using
ANSYS) for various thicknesses of the diamond disk as the
first component in the x-ray path.  The thickness of the
diamond disk (contamination barrier) is varied from 127 to
200 µm in the following analyses.

The diamond disk is clamped on a 7 × 7 mm2 opening in
the fixed mask and has a 4.5 × 4.5 mm2 aperture upstream1

as shown in Fig. 5.  The power absorption (generated by
Code “HIT”6) in Fig. 5 is for a 175-µm-thick diamond disk.
The thermal contact resistances between the diamond disk
and fixed mask are modeled as a 0.5-mm-thick element with
various k (from 0.5 W/(m K) to 5 W/(m K)).  At normal
operation conditions (no missteering), the fixed mask is
subjected to an 11 W/mm2 heat flux due to its smaller
aperture size than the x-ray beam size (see [7, 8] for more
details); Fig. 6 shows the temperature contour of such a case
when k (contact conductance) = 5 W/(m K).  The temperature
rises in the fixed mask become important for the diamond
disk when the Tmax (during operation) of the disk is close to
its Tcr.
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FIG. 2.  The maximum temperature (°C) vs. diameter (mm) and
thickness (µm) of a thin disk (k = 1000 W/(m K)).

FIG. 3.  The maximum radial stress (MPa) vs. diameter (mm) and
thickness (µm) of a thin disk (k = 1000 W/(m K)).

FIG. 4.  The critical temperature (Tcr) (
oC) vs. diameter (mm) and

thickness (µm) of a thin disk (k = 1000 W/(m K)).
© 1996 American Institute of Physics 3



FIG. 5.  The computer model for the diamond disk.

FIG. 6.  The temperature contour of the assembly.

Figure 7 shows the calculated Tmax and Tcr for both the
various thicknesses of the diamond disk and the contact
conductance.  For the radiatively cooled case, the curves of
Tcr  and Tmax intersect at about 170 µm, which implies that
at thicknesses larger than 170 µm, the diamond disk is free
from buckling with any cooling scheme.  However, the better
the cooling scheme, the less thick the disk can be and still
avoid thermal buckling.  Figure 8 shows the maximum
compressive stress σy (MPa) during operation and the
maximum compressive stress at buckle.  The maximum
compressive stress σz is about 3-5% smaller than σy.  The
Tmax and Tcr for a 250-µm-thick beryllium window (sitting
on a 8 × 5.5 mm2 opening in the fixed mask) after a
175-µm-diamond disk are 95°C and > 200°C, respectively8

(σeff = 120 MPa).
The thermal buckling analyses for a diamond disk after

various thicknesses of graphite filter are presented in [8].
Also, that analysis8 shows that a 127-µm-thick diamond
disk after a 100-µm-thick graphite filter is safe (Tmax =340°C,
4 © 1996 American Institute of Physics 
FIG. 7.  The calculated maximum temperature during operation
and the critical temperature (Tcr) for various thicknesses of
diamond disk with various conduct conductances (k).

FIG. 8.  The calculated maximum compressive stress σy (MPa)
during operation and the maximum compressive stress σy (MPa)
at buckle.
Rev. Sci. Instrum. 67 (9), September 1996



Tcr > 400°C, and σeff = 305 Mpa when k the contact
conductance equals 5 W/(m K)).  A 125-µm-thick graphite
filter (Tmax =2200°C, Tcr > 2300°C8) or thicker is free from
thermal buckle.
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