1-Introduction: ‘
This paper describes the RS232 interface of the “Win3660 Ver3.00” program. All the RS232
functions are in the “RS§232.c” module. This program is written in C language for Windows.
It contains the routines:

- Serial interface initialization

- Message transmission

- Message reception

- Errors handling

- Instrument commands

2- Handshaking:

The exchange of data between the computer and the micrologger always begins with the
activation of the “RTS” line by the computer. In a 5sec delay, the micrologger should activate
the “CTS” line to show that it is ready to receive a message.

After reception of the message, the micrologger executes a control and always sends back a
message to the computer. It then clears the “CTS” line.

The message received by the computer is in the global variable Echo[4000]. After reception of
the message, the computer clears the “RTS” line.

3- Message constitution:

The messages sent by the computer to the micrologger are built as follows:

- First byte: “T".

- Second and third bytes: 2 digits that indicate the function number. According to the control, the
following bytes will represent a character string or bytes (integers, floating numbers...). The 4th
byte permits to know if it is a string or only bytes.

- 4th byte: OxFF if the following bytes represent a character string, or the total number of bytes of
the message.

- 5th to nth bytes: character string or (n-4) bytes.

4- Micrologger controls:
For each control corresponds a routine. These routines send back a byte (char) that indicates if an
error happened:
0: no error
1: Transmission error: “CTS time out”
2: Transmission error: Transmission interrupted
3: Message received by the computer was not completed
4: Error in the Com port choice
5: Message received by the micrologger not legible: the micrologger sends back “ERROR0”
6: No message received by the micrologger in a 5 sec. delay

3660_232 TC:9/23/99 Page 1/9

The bytes sent back by the micrologger are in the ‘Echo’ variable. Each byte has a different
meaning according to the control.

4.1 Eeprom writing:
Prototype: char EcritureEeprom (char Page, char AdressePage, char NbreBytes, char
Fonction, void *Outbuffer)

Parameters: Page: 1 of the 16 pages of the Eeproms (each has 256 bytes)
AdressePage: | of the 256 bytes in the selected page
NbreBytes: number of bytes to be written in the Eeprom
Function: 0: Simple writing

1: Current parameter writing

2: Temperature parameter writing

3: Pressure parameter writing

4: EEPROMO configuration writing

5: Time interval between 2 automatic storage
6: High/low alams levels

7: High/low current output levels

8: Thermal cut-off temperature

9: Span gas concentration

14: EEPROMI1 configuration writing

*Qutbuffer: Address of the first byte to be written in the Eeprom
Return value: Error number

Transmitted message:
- First byte: “T’
- 2nd and 3rd bytes: 22
- 4th byte: 8 + NbreBytes
- 5th byte: Page
- 6th byte: AdressePage
- 7Tth byte: NbreBytes
- 8th byte: Function
- 9th byte to (8 + NbreBytes)th byte: bytes written in the Eeprom

Received message:
Echo[0]: Number of byte written in the Eeprom
Echo[1] and the following: bytes to be written in the Eeprom

4.2 Eeprom reading:
Prototype: char LectureEeprom (char Page, char AdressePage, char NbreBytes)

Parameters: Page: 1 of the 16 pages of the 2 Eeproms (each with 8 pages of 256 bytes)
AdressePage: | of the 256 bytes in the selected page

3660_232 TC:9/23/99 Page 2/9

NbreBytes: number of bytes to be written in the Eeprom

Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 23
- 4th byte: 7
- 5th byte: Page
- 6th byte: AdressePage
- 7th byte: NbreBytes

Received message:
Echo[0]: Number of byte read in the Eeprom

Echo[1] and the following: bytes read in the Eeprom

4.3 RS232 test:
Prototype: char TestRs232 (char *OutBuffer)

Parameters: *QutBuffer: Address of the string
Return value: Error number

Transmitted message:
- First byte: “T’
- 2nd and 3rd bytes: 24
- 4th byte: OxFF
- 5th byte to nth byte: character string

Received message:
Echo: String received by the micrologger

4.4 Analog voltages reading:
Prototype: char LectureADC(void)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 25
- 4th byte: OxFF
- 5th byte: \O’

3660_232 TC:9/23/99

Page 3/9

Received message:

Echo[0]: gas channel range(0 to 3)

Echo[1] to Echo[4]: Voltage on the gas channel (floating point number)
Echo[5] to Echo[8]: Voltage on the temperature channel (floating point number)
Echo[9] to Echo[12]: Voltage on the pressure channel (floating point number)

4.5 Keyboard test:
Prototype: char TestClavier(void)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T
- 2nd and 3rd bytes: 26
- 4th byte: OxFF
- 5th byte: \0’

Received message:

Echo[0]: Keyboard byte: 1: MEAS
2: CAL
4: STO
8: UP
16: DOWN
32: MODE

4.6 Display test:
Prototype: char TestDisplay(float Nombre, char Unites)

Parameters: Nombre: Number to be displayed (floating)
Unites: 3-°Cor °F
4- ppm/ppb
5- %/ppm
6- Kpa/pa
7- bar/mbar
8-
9- Yosat
10- ppm
11- %

Return value: Error number

Transmitted message:

3660_232 TC:9/23/99 Page 4/9

- First byte: ‘T’

- 2nd and 3rd bytes: 27

- 4th byte: 9

- 5th byte to 8th byte: Nombre
- 9th byte: Unites

Received message:
Echo = “OK”

4.7 Measurements reading:
Prototype: char LectureMesures(void)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 28
- 4th byte: OxFF
- 5th byte: \0’

Received message:

Echo[0] to Echo[3]: Concentration (floating point number)
Echo[4] to Echo[7]: Temperature (floating point number)
Echo[8] to Echo[11]: Pressure (floating point number)

4.8 Keyboard & display desactivation
Prototype: char DesactivationInstrument(void)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 29
- 4th byte: OxFF
- 5th byte: \0°

Received message:
Echo “OK”

4.9 Keyboard & display activation
Prototype: char activationInstrument(void)

Parameters: none

3660_232 TC:9/23/99

Page 5/9

Return value: Error number

Transmitted message:
- First byte: ‘T
- 2nd and 3rd bytes: 30
- 4th byte: OxFF
- 5th byte: \0’
Received message:
Echo “OK”

4.10 Checksum reading
Prototype: char LectureChecksum(void)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 31
- 4th byte: OxFF
- 5th byte: \0’

Received message:

Echo[0]: byte that contains the checksum of the user memory (stored data)

4.11 Reset of the Eeprom
Prototype: char ResetEeprom(char fonction)

Parameters: Fonction: 0: Parameters memory
1: User memory
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 32
- 4th byte: OxFF
- 5th byte: \O

Received message:
Echo= “OK”

4.12 Stored data reading
Prototype: char LectureEchantillons(void)

3660_232 TC:9/23/99

Page 6/9

Parameters: none
Return value: Error number

Transmitted message:

- First byte: ‘T’

- 2nd and 3rd bytes: 33

- 4th byte: OxFF

- 5th byte: \0’
Received message:
Echo: 8 bytes for each sample: 4 bytes for the concentration in EEPROMO and 4 bytes in
EEPROM 1 for the date & time. The 4 first bytes in both EEPROMs are for the sample 0 and the
4 last for the sample 499. An empty sample has its 4 bytes in EEPROMO to OxFF.

4.13 Date/time reading
Prototype: char LectureHeure(void)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 36
- 4th byte: OxFF
- 5th byte: \0’

Received message:
Echo: 5 bytes with a special codage

4.14 Date/time writing
Prototype: char EcritureHeure(void)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 37
- 4th byte: 9
- 5" t0 9" byte: date/time

Received message:
Echo= “OK”

4.15 Analog output test
Prototype: char TestSortieAnalogique(char TestFlag, float Tension)

3660_232 TC:9/23/99 Page 7/9

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T
- 2nd and 3rd bytes: 38
- 4th byte: 9
- 5th byte: TestFlag: 0x01 active test, 0x00 inactive test
- 6" to 9" byte: Tension: 0.0 to 4095.0mV

Received message:
Echo= “OK”

4.16 Alarm output test
Prototype: char TestAlarmes(char TestFlag, char Alarme)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 39
- 4th byte: 6
- 5th byte: TestFlag: 0x01 active test, 0x00 inactive test
-G® byte: Alarme: -0: no relay activated
-1: Low alarm relay activated
-2: High alarm relay activated

Received message:
Echo= “OK”

4.17 Sensor current test
Prototype: char MesureCourantSonde(void)

Parameters: none
Return value: Error number

Transmitted message:
- First byte: ‘T’
- 2nd and 3rd bytes: 40
- 4th byte: OxFF
- 5th byte: \0°

3660_232 TC:9/23/99

Page 8/9

Received message:
Echo: 4 bytes that represent a float value: (a current in uA)

5- Notes

-A fleating number is coded on 4 bytes. It is necessary to invert the order of these bytes to get a
format compatible with Microsoft.

-An int number is coded on 2 bytes. It is necessary to invert the order of these bytes to get a
format compatible with Microsoft.

3660_232 TL:9/23/99 Page 9/9

